
Bachelor Thesis

Profiling Concurrency

Konrad Johannes Reiche

July 19, 2011

Supervised by
Prof. Dr. Marcel Kyas

Freie Universität Berlin

Department of Mathematics and Computer Science
Institute of Computer Science

Declaration of Authorship

I hereby confirm that I have written this thesis on my own and that I have not used any
other materials than the ones referred to. This thesis has not been submitted, either in part
or whole, for a degree at this or any other University.

Konrad Johannes Reiche
July 19, 2011

Abstract

The purpose of this bachelor thesis is the development and usage of a profiler. A profiler is a
tool which is used during software development for measuring the execution of an application.
Since profiling can be understood in a broad sense, the measurable values differ in the same
sense. A profiler could for instance, monitor and trace events, measure the cost of these
events, attribute the cost of these events, etc.
The profiler developed within this scope will focus on concurrent events of applications

written in Java. The first part of this thesis concentrates on the development of the profiler.
The second part concentrates on the usage of the profiler. The profiler is implemented by
using the Java Virtual Machine Tool Interface (JVMTI) in C++ and in addition a graphical
user interface is implemented in Java by using the Swing library. Furthermore methods were
investigated which help to extract knowledge from the gained data.
The developed profiler is able to collect data about threads and monitor locks. In par-

ticular the emerging contention between threads will be traced and visualized. Further, the
profiler is able to give details about the actions which occurred during the use of thread co-
ordination and synchronization mechanisms. Also the typical profiling feature of measuring
the code execution time is provided.
The goal is to strengthen the conceptional understanding of concurrency and identify

design flaws in the implementation of the profiled Java application. Thus, different use cases
demonstrate the listed features on exemplary Java applications. Finally, the profiler itself
and profiling as method will be evaluated.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem . 3
1.3 Solution . 4
1.4 State of the Art . 5

2 Background 7
2.1 Java Threads . 7
2.2 Java Monitors . 9
2.3 Condition Queues . 10
2.4 Java Virtual Machine Tool Interface . 12

2.4.1 Thread-Safety . 14
2.4.2 Usage . 14
2.4.3 Overhead . 15

3 Profiler 17
3.1 Requirements . 17
3.2 Architecture . 18
3.3 Design . 19

3.3.1 Thread Overview . 20
3.3.2 Monitor . 20
3.3.3 Monitor Log . 20
3.3.4 Event Log . 20
3.3.5 Method Profiling . 21

3.4 Implementation . 22
3.4.1 Communication Protocol . 22
3.4.2 Ordering the Messages . 24
3.4.3 Waiting And Signaling Events . 25
3.4.4 Contextualization by Stack Traces . 26
3.4.5 Contention and Deadlock Detection 26
3.4.6 Method Profiling . 28

iv

4 Usage 29
4.1 Manual . 29
4.2 Use Cases . 34

4.2.1 Extending a Thread-Safe Class . 34
4.2.2 Overhead of Santa Claus Problem . 36
4.2.3 Fairness of Bounded Buffer . 38
4.2.4 Bottleneck in Concurrent Merge Sort 41
4.2.5 Instrumenting Explicit Locks . 43
4.2.6 Dynamic Lock-Ordering Deadlock . 46
4.2.7 Synchronizing on Strings . 48

4.3 Evaluation . 50
4.4 Overhead . 51

5 Conclusion 53
5.1 Outcome . 53
5.2 Future Work . 54

5.2.1 Bytecode Instrumentation . 55
5.2.2 Record Scheduling Decisions . 55
5.2.3 Overhead Reduction . 55
5.2.4 Interactive Profiling . 55
5.2.5 Alternative Profiling Methods . 56

v

List of Figures

1.1 VisualVM – a debugging and performance analysis tool 6
1.2 YourKit – a Java and .NET profiler . 6

2.1 Life cycle of java.lang.Thread . 8
2.2 A Java style monitor . 11
2.3 Overall architecture proposed by the design of the JVMTI 12
2.4 Java thread state according to the JVMTI . 16

3.1 Architecture of the profiler . 18
3.2 Illustrating different resource-allocation graphs 27

4.1 Displaying the front ends welcome screen and waiting for incoming results . . 30
4.2 Serving as an entry point the general view shows the involved threads and

their states . 31
4.3 Tracing the actions performed on the profiled monitors and visualizing a com-

plete stack trace for each log entry . 32
4.4 Presenting the profiled monitors and information about their usage 33
4.5 Constructing dynamically a resource-allocation and checking for deadlocks . . 33
4.6 Presenting the method profiling information in a tabular form which can be

filtered by methods . 34
4.7 Methods in which most of the time was spent during the execution of Con-

current Merge Sort . 42
4.8 Illustrating the occurrence of a deadlock with the dynamically constructed

resource-allocation graph . 47
4.9 Displaying the different resource-allocation graph patterns in the Synchroniz-

ing on Strings example . 49

vi

List of Tables

4.1 Listing the profiled monitors and in which context each monitor was accessed
in the Extending a Thread-Safe Class example 35

4.2 Number of times a certain event has occurred in the Santa Claus Problem . . 37
4.3 Logged access to the used monitors in the Santa Claus Problem 38
4.4 Logged access to the used monitors in the Bounded Buffer example 40
4.5 Number of times a certain event has occurred in the Bounded Buffer example 40
4.6 Filtered results of the monitor log for displaying the actions of a single thread 40
4.7 Number of times a thread was in contention with another thread 45
4.8 Methods in which most of the time was spent during the execution using

ReentrantLock . 45
4.9 Methods in which most of the time was spent during the execution using

ReadWriteLock . 45
4.10 Listing the profiled monitors and in which context each monitor was accessed

in the Synchronizing on Strings example . 48
4.11 Comparing consumed execution time between normal execution and profiled

execution . 51
4.12 Comparing the number of times a deadlock has occurred between normal

execution and profiled execution . 52

vii

Listings

1.1 Extending a thread-safe class . 4

2.1 Canonical form for a state-dependent method 11
2.2 JVMTI callback function which prints the name of the executing thread and

the current method name every time a method is entered 14
2.3 Defining functions for acquiring and releasing a raw monitor in order to es-

tablish mutual exclusion . 15

3.1 Describing the communication protocol with the protobuf format 23
3.2 Defining single messages for communicating the occurrence of an event 23
3.3 Modeling JVMTI related entities by additional messages 24
3.4 Extending the current message protocol by a hypothetical new event 24
3.5 Generating timestamps by reading the 64-bit register Time Stamp Counter

on x86 processors . 25

4.1 Testing whether the system can find the profiler agent 29
4.2 Starting the Java front end with passing an optional port parameter 29
4.3 Starting the profiling process with two optional parameters specifying the

Java front ends network address . 30
4.4 Revisiting the problem of extending a thread-safe class 35
4.5 Extending a thread-safe class by using client-side locking 36
4.6 Interface definition of java.util.concurrent.locks.Lock 43
4.7 Interface definition of java.util.concurrent.locks.ReadWriteLock 43
4.8 Extract of source code for the ReadLock and WriteLock 44
4.9 Dynamic lock-ordering deadlock . 47
4.10 Synchronizing on string literals . 49

Chapter 1

Introduction

One big challenge in computing science is to write correct concurrent programs. Unlike the
sequential programming model, which is intuitive and natural, the concurrent programming
model is more prone to error. The concurrent programming model allows the execution of
multiple computations at the same time. Different interleavings can eventuate into inter-
ference if no thoughts were put into the design of accessing multiple resources at the same
time.
Quality assurance for concurrent programs is not only a concern of carefully considered

program design, even experienced software engineers are facing bugs with the raise of com-
plexity of the developed software [GBB+06, p. xvii]. Testing tools help the developer with
automated methods to find bugs, design flaws or performance bottlenecks. One common
kind of testing tool at the low level of program analysis is profiling.
Program profiling is part of dynamic program analysis and used during software devel-

opment for measuring the application. Typically profilers aim to measure the frequency
and duration of program routines or memory consumption [ASU86, p. 733]. Since profiling
can be understood in a broad sense, the kind of measurable values differ in the same sense.
The choice of measured values is based on different requirements the profiler should satisfy.
A profiler could for instance, monitor and trace events, measure the cost of these events,
attribute the cost of these events, etc. [VL00]
In this bachelor thesis, one method of developing a profiler tool for Java programs is in-

vestigated with particular emphasis on concurrency-related events. For this the Java Virtual
Machine Tool Interface (JVMTI) [Ora07] will be used to implement a native profiling agent1

in C++. The agent will gather the data and provide them on a communication interface.
A client written in Java will process the data and generate even more valuable information.
The Java Swing library will be used to implement a visualization of the interpreted data.
This thesis is concerned with the type of profiler which provides information to the de-

veloper, as opposed to the type of profiler which is used by a compiler or run-time system

1An agent is a component of a software, which is capable of acting autonomously for the user or another
program in order to accomplish a task [MM00].

1

to receive feedback [ASU86, p. 916]. Thus it is also subject to examine the methods in
which the collected raw data should be interpreted, especially in how far it is feasible to
strengthen the conceptional understanding of concurrency and identify design flaws in the
implementation of the profiled Java application.

1.1 Motivation

Today, threads are rarely optional. Even if the Java application is programmed explicitly
single-threaded, used frameworks might not be single-threaded. The Java Virtual Machine
(JVM) creates threads at the start for maintenance, for instance garbage collection, event
dispatching or finalization. When using frameworks for graphical user interfaces like AWT
or Swing threads also have to be used in order to create an interactive user experience. The
same applies to Java RMI or Java Servlets [GBB+06, p. 9].
Using multiple threads sharing resources without proper synchronization will eventually

lead to concurrency bugs due to non-deterministic scheduling. Concurrency bugs are, unlike
memory and semantic bugs, a lot harder to detect. On the one hand they are usually under-
reported and on the other hand it is hard to understand their patterns and manifestations
due to their emergent nature involving interactions among multiple components [LPSZ08].
Thus it is no coincidence development teams are facing more and more bugs which emerged

due to thread-related code. On the NetBeans developer it was reported, how they tried to
patch a single class over 14 times in order to fix a threading problem [GBB+06, p. xvii].
It is obvious, that a profiler cannot make up for the lack of understanding of how code

is implemented in a thread-safe way. The profiler, however, can deliver results which could
be used to check, whether the applied synchronization operate in the way the developer
intended to. For instance the profiler could check the developers intentions in the following
way:

• whether code parts were ever accessed by more than one thread at the same time

• whether code parts were ever accessed by more than one thread at all

• how many locks were used

• how many threads have contended for the same lock

• with which threads did another thread contend for a lock

• which actions happened during thread coordination

Problems with concurrency in practice are not limited to newcomers. Even experi-
enced programmers face emergent errors which are rooted in threading and their interac-
tion [GBB+06, p. xvii]. This is due to applications growing very large. A large application

2

will consist of many components interacting with each other. For the developer this is an
additional burden, because designing thread-safe classes requires a more sophisticated design
compared to non-thread-safe classes.
In order to expose those flaws testing is applied during software development. Existing

testing techniques, however, address mainly sequential aspects of applications (statements,
branches, etc.) instead of concurrent aspects (interleavings) [MQ07]. Concurrent aspects
cannot be effectively countered, because the number of interleavings grows exponentially to
the number of threads. This is in particular true for the mentioned large growing applica-
tions.
Profiling offers an alternative approach: instead of testing the application for single state-

ments and their results, profiling deals with testing whole parts of the program. The ability
to monitor or to measure code and to diagnose errors is called code instrumentation [SE04].
A common practice is to measure the execution by adding additional code, for instance
code which prints the current time or the current stack trace. It’s a manual process, which
requires to determine the target code, instrument the code, compile the code, run the ap-
plication, analyze the results and remove the code instrumentation afterwards. When the
next problem occurs all the steps have to be repeated. This does not give a comprehensive
overview of how the different parts of the application are performing together [Wil07].
Writing a standalone profiler avoids the problems of ad-hoc measurement because the

application does not have to be modified. The tool is injected into the application and
starts the code instrumentation automatically. Several snapshots of the applications form a
profile of the application. The task of the profiler is to summarize the data in a meaningful
way. The goal is to generate an overview of the whole application at run-time. The question
is not, what statement can be made about some single lines of code, but what statement
can be made about these single lines of code in the picture of the whole application.
This is especially useful when concurrency is used to exploit multiprocessor architecture.

When applied inadequately this can lead to inefficient code. Profiling can help to unveil hot
spots which cause this flaw. In order to improve the code it has to be measured.

1.2 Problem

Susan Graham, Peter Kessler and Marshall McKusick distinguish in their article gprof:
a call graph execution profiler between two kinds of profiles: those which present counts
of statements or routine invocations and those which present timing information about
statement or routines [GKM04]. What both kind of profiles have in common is the concept
of time. The profiled data is always related to a period of time. A profiler could measure a
program from start to termination, but also for a short period during the program execution.
The same applies when profiling data is related to concurrency. Therefore the events

3

are traced throughout the program execution. The question is: which kind of information
should be traced in order to reveal information which help to understand the concurrent
program behavior? Suitable data would include information about threads and their inter-
action with each other. Since thread interaction is performed by using synchronization, the
profiler should make access to synchronization structures visible. For instance considering
the following program in listing 1.1 which was adapted from the book Java Concurrency in
Practice [GBB+06, p. 72]:

public class EnhancedSynchronizedList<T> {
public List<T> list =
Collections.synchronizedList(new ArrayList<T>());

public synchronized boolean putIfAbsent(T x) {
boolean absent = !list.contains(x);
i f (absent) {
list.add(x);

}
return absent;

}
}

Listing 1.1: Extending a thread-safe class

A thread-safe list is extended by another class adding the method putIfAbsent, which adds
only an element to the list if it is not present. Extending a thread-safe class does not imply
the new class is thread-safe, too [GBB+06, p. 72]. The profiler should be able to reveal
information with respect to the problem of thread-safety. This includes single events related
to the synchronization, access to locks and thread state changes, but also acquiring and
releasing a Java monitor, waiting and signaling on a Java monitor and the use of higher-
level synchronization constructs, for instance java.util.concurrent.Semaphore. Further the
profiler should be able to visualize the data in order to offer alternative presentations. With
respect to synchronization the profiler should display the shared resources and the threads’
access to it by using a resource-allocation graph2.

1.3 Solution

In order to realize profiling an API provided by Oracle will be used: Java Virtual Machine
Tool Interface (JVMTI) [Ora07]. JVMTI is a native programming interface for implementing
tools and provides a rich set of functions for both: querying and controlling the JVM and
reacting to occurring events. For a more detailed insight, methods have to be explored which
interpret the data received through the JVMTI. This deals especially with understanding
how concurrency is working in the Java programming language. The purpose of this work is

2A system resource-allocation graph is a directed graph and used to describe deadlocks [SG98, p. 210].

4

to research these methods. The agent runs in the same process as the JVM being examined.
Therefore the architecture will consist of two parts: a front end and a back end. This reduces
the already present interference with the target application’s execution.

Back End A native profiling agent which gathers the relevant data.

The gathering of relevant data is not limited to functions provided by the JVMTI.
First, any useful data receivable through the JVMTI has to be stored. Then the
stored data has to be refined, for instance by linking different data together.

Front End A graphical user interface which interprets and prepares the data in order to
display the information in a meaningful way.

The second component of the profiler is the visualization in the graphical user interface.
Often it is enough to present the information in a formatted way, for instance in a
tabular form. Additional illustration, however, for instance by using diagrams, can
improve the understanding even better.

Thus the profiler uses a client-server architecture. The native profiling agent acts as the
client sending the gathered data to the server. The server is the front end which processes
the results.
Before presenting the solution in detail a brief overview over the backgrounds is given

in chapter 2. In chapter 3, the profiler is discussed in full length in means of software
engineering, including requirements, architecture, design and implementation. In chapter 4
the profiler usage is evaluated on different use cases. In the end a brief overview about the
results is summarized and concluded in chapter 5.

1.4 State of the Art

There are many tools which have proven to be effective over time, but are still not complete
and therefore in the process of development. Since this work focuses mainly on concurrent
aspects of profiling, it would be interesting to see in how far these current profilers scope with
this task. Two well known profilers are VisualVM and YourKit, both offering a graphical
user interface.
VisualVM, which can be seen in figure 1.1, is part of the JDK and thus free and also open

source [Ora11b]. As most profilers, VisualVM offers the ability to monitor the performance,
memory consumption and thread activity. VisualVM allows it to produce a thread dump
which includes a stack trace of every thread and whether a thread is in contend with other
threads and if a deadlock was discovered. The thread activity is made understandable with
different graphs and statistical information, for instance how long a thread was blocked.

5

(a) Monitor application performance and
memory consumption

(b) Profile application performance and an-
alyze memory allocation

Figure 1.1: VisualVM – a debugging and performance analysis tool

(a) Call graph shows which methods were
called from certain methods

(b) Monitor profiling allows analysis of syn-
chronization issue

Figure 1.2: YourKit – a Java and .NET profiler

For YourKit, which can be seen in figure 1.2 the purchase of license is required and it is
closed source [You11]. It is more interesting than VisualVM as the developers have focused
more on the concurrency aspects of Java. YourKit offers the same kind of features listed
for VisualVM. In addition it deals with the profiling of Java monitors. Monitor profiling
in YourKit helps with analyzing inconsistent synchronization. It shows which thread has
called Object.wait, for how long and which threads were blocked on attempt to acquire
an owned monitor lock. Especially for the last feature an attempt will be made to adapt
this for the profiler of this work. YourKit is also able to construct call graphs3. YourKit
distinguishes the call graphs by threads. Thus statements can be made about threads,
for example which code was executed by a certain thread. Overall the offered features in
the present profilers are quite limited with respect to concurrency aspects, when taking into
account, that the java.util.concurrent package is not considered, although it offers a standard
set of concurrency utilities which ease the task of developing multithreaded applications on
a higher level of abstraction.

3A call graph is a directed graph. A node represents a subroutine and an edge between two nodes indicates,
that one subroutine has called the other subroutine [GKM04].

6

Chapter 2

Background

In order to understand the problem domain, selected topics will be presented. Firstly, the
basics will be given to understand how threads work in the Java programming language.
Then the general synchronization concept in the Java programming language is introduced:
Java monitor. Since the profiler focuses on waiting and signaling events of monitors, the
concept of condition queues is explained as well. In the end an introduction to the Java
Virtual Machine Tool Interface is given to reach an understanding of the used architecture.
This will serve as a base to understand the implementation of the profiler which is presented
in Chapter 3.

2.1 Java Threads

Threads are created and manged by the classes java.lang.Thread and java.lang.ThreadGroup.
A thread can only be created by instantiating an object of the class Thread and is not yet
active before the method Thread.start was invoked. What code the thread executes is defined
in the method Thread.run. The original implementation of Thread.run is empty. Therefore
this method has to be overridden by subclassing Thread or by providing a Runnable object.
ThreadGroup represents a set of threads. A ThreadGroup can have other ThreadGroup
objects. Thus it forms a tree data structure. A thread is allowed to access information of its
own thread group, but not the information of any other thread group [AGH00, sec. 14.11].
Every thread has priority which gives a preference to the scheduler indicating whether

a thread should be preferred over another thread. This priority can, however, make no
guarantees. Thus priority cannot be used to write reliable code, for instance for mutual
exclusion [GBB+06, p. 218]. Every thread has a state. The state describes the thread in
scope of the JVM, not in scope of the underlying operating system. A thread is always in
one, and only in one, of the following states:

New A newly created thread, which has not started yet.

Runnable A thread which has been started, but has not terminated yet.

7

Blocked A thread which is waiting to acquire a monitor lock.

Waiting A thread which is waiting for another thread to perform a particular action.

Timed Waiting A thread which is waiting for another thread to perform a particular action
or until the specified time has elapsed.

Terminated A thread which has been terminated.

A common confusion is to think, that a Runnable thread is actually executing code.
Looking at the state definition again it should be clear that there is no state specified for
a thread executing code. Another confusion is to think, that a thread which waits on a
condition to become true will always be in the state Waiting or Timed Waiting. There is no
specification which requires a thread ever to enter Waiting or Timed Waiting. This is due to
two reasons. On the one hand the JVM could implement blocking by spin-waiting. On the
other hand spurious wake-ups from Object.wait and Condition.await are permitted which
makes it possible for a thread being more than one time in transition between Runnable
and Waiting or Timed Waiting, although the condition has not become true yet [GBB+06].
Nevertheless a graph in figure 2.1 sketches the life cycle of a Java thread to give a conceptional
idea of the possible state transitions.

New Runnable
Thread.start

Terminated

Thread finishes execution,
Exception

Waiting
Object.wait,

LockSupport.park

Timed
WaitingObject.wait,

Thread.sleep

BlockedWaiting to enter monitor

Exception
Object.notify,

Object.notifyAll

Regain monitor lock,
Spurious wake-up

ExceptionObject.notify
Object.notifyAll

Time elapsed,
Regain monitor lock,

Spurious wake-up

Entered monitor

Figure 2.1: Life cycle of java.lang.Thread

When a thread has become Waiting or Timed Waiting and was notified or the timer of
Timed Waiting has elapsed the thread tries to reacquire the monitor lock, because it was
released after invoking Object.wait. Without this behavior, no other thread could succeed as
one thread has to own the objects monitor lock in order to make invocations to Object.notify,
Object.notifyAll or Object.wait [GBB+06, p. 297].

8

Threads are a fundamental part in profiling. Every thread consumes a considerable amount
of memory when being created. Also taking thread scheduling into account context switches
are expensive, too. When a thread blocks, for instance due to waiting for a monitor which is
held by another thread, the scheduler usually suspends the thread. If threads block frequent,
this incurs a lot context switches, thus increasing the scheduling overhead and reducing the
throughput. The actual cost of a context switch is depended on the used platform. It is
said a context switch costs about an equivalent of 5.000 to 10.000 clock cycles or several
microseconds [GBB+06, p. 230].
Every thread is associated with a call stack. A Java thread computes a stack trace based

on this call stack. For debugging purposes stack traces are crucial and should not be omitted.
Knowing in what context a thread is executing adds valuable semantic to the tracked events.
A stack trace consists of one or more stack trace elements. A stack trace element contains
information about the class name, the file name, the line number, the method name and
whether it is a native method [AGH00, sec. 12.6].

2.2 Java Monitors

A critical section is code which may access a shared resource, but must not be accessed by
more than one thread at a time. To prevent interference the access to these critical sections
is synchronized. In Java the equivalent action to enter a synchronized critical section is to
acquire the lock of an object. The equivalent action to leave a synchronized block is to release
the lock of an object. Every java.lang.Object has a lock associated with it. The lock can be
acquired and released by using the synchronized statement in methods [AGH00, sec. 14.3].
These built-in locks are called intrinsic locks or monitor locks [GBB+06, p. 25].
Locks are owned per thread. Thus a thread which invokes more than one time synchronized

on the same object within the same method can proceed without blocking. The acquired lock
is not released until the outermost synchronized is exited. Throwing an exception releases a
lock as well. Since the synchronized statement includes both, acquiring and releasing a lock,
it is impossible to forget releasing a lock in the end [GBB+06, p. 25].
When publishing and sharing objects the use of synchronized is not only used for atom-

icity or demarcating critical sections. A significant effect of using synchronized is memory
visibility. Thus in addition to prevent threads from modifying objects when they are in
use by other threads, it is also required that other threads can see the new state of the
object [GBB+06, p. 33].
With respect to profiling, developers are concerned with two issues: the performance im-

pact due to monitor contention and the reasons for occurring deadlocks [VL00]. One reason
to use profiling in section 1.1 was motivated through the lack of scalability in multiprocessor
systems. This is mainly due to too much monitor contention.

9

Monitor Contention Evolves when a thread holds a monitor lock and one or more threads
become blocking for trying to acquire this monitor lock. Monitor contention evolves
typically when a thread holds a monitor too frequently or too long.

Synchronization to achieve mutual exclusion on critical sections is often not sufficient to
implement concurrent applications. Sometimes threads have to wait for a certain condition
to become true. In avoidance of using busy waiting this requires the threads to communicate
with each other. In order to implement thread communication one could use the waiting and
signaling events of the Java programming language provided by a monitor. Even though
it is recommended to use higher-level locking primitives instead [GBB+06, p.300], using
Object.wait, Object.notify and Object.notifyAll is still a common way to implement thread
communication. In addition many Java library classes make use of these methods. Usually
this is not visible to the developer. Hence, it is another motivation for the profiler, as the
profiler should make this use visible. Since some of the examples in section 4.2 make use to
this paradigm as well it will be explained briefly.

2.3 Condition Queues

Using the methods Object.wait, Object.notify and Object.notifyAll is bound to a specific
pattern: condition queues. Condition queues allow threads to wait for a specific condition to
become true. Thus the elements of a condition queues are not the objects, but the threads
themselves. As every object is able to act as a lock, every object is able to act as a condition
queue, too. Both concepts are tightly bound to each other. In order to wait on an object
for a condition, the thread has to own the lock of the object. Waiting for a state-based
condition and preserving the state consistency depends on each other. [GBB+06, p. 297]. In
figure 2.2 it is illustrated how the monitor lock mechanism and the waiting and signaling
are functioning together.

Object.wait The current thread starts to wait until another thread invokes the Object.notify
method or the Object.notifyAll method. It atomically releases the lock and requests
the underlying operating system to suspend the thread.

Object.notify Wakes up a single thread that is waiting on the objects’ monitor. Upon
waking, the notified thread will try to reacquire the lock before returning.

Object.notifyAll Wakes up all threads that are waiting on the objects’ monitor. Upon
waking, the notified thread will try to reacquire the lock before returning.

The reason why it is recommended to use higher-level locking primitives is due to the easy
incorrect use of condition queues. One of the reasons is due to the fact, that Object.wait can

10

Figure 2.2: A Java style monitor

return although the condition has not become true yet, as the method is allowed to return
spuriously. Another reason is that the object could be associated to more than one condition
predicate. If a thread gets notified it is also not clear, whether the condition has become
true. Bounded Buffer1 is an example for one condition queue associated with two predicates:
not full and not empty. These are many reasons why the following canonical form shown
in listing 2.1 should be applied. The listing is adapted from the book Java Concurrency in
Practice [GBB+06, p. 301], but the general structure is also described in the Java Platform
Standard Edition 6 API Specification [Ora11a].

void stateDependentMethod() throws InterruptedException {
// condi t ion pred i cate must be guarded by lock
synchronized (lock) {

while (!conditionPredicate()) {
lock.wait();

}
// object i s now in des i r ed s ta t e

}
}

Listing 2.1: Canonical form for a state-dependent method

This alone, however, is not sufficient to avoid incorrect use. Great care has also to be
taken when performing the notifications. First of all, whenever the condition predicate be-
comes true someone has to perform a notification. Second, as a thread cannot return from
Object.wait without reacquiring the lock, the thread doing the notification should imme-
diately release the lock. In general Object.notifyAll should be preferred over Object.notify

1A bounded buffer is a multislot communication buffer which is shared between threads. Producer threads
deposit objects in the buffer and consumer threads fetch them. The buffer has a queue containing those
objects which have not been fetched yet [And99, p. 161].

11

JVM Process

Java Virtual
Machine

Profiling
Agent

Tool Interface

Events

Control

Profiler Process

Profiler
Front End

Communication
Protocol

Figure 2.3: Overall architecture proposed by the design of the JVMTI

as a liveness failure named missed signals could occur [GBB+06, p. 301]. Single notifica-
tions can be used over Object.notifyAll when only one condition predicate is associated with
the condition queue, each thread executes the same logic when returning from Object.wait
and a notification enables at most one thread to proceed. Most of the time this is not
case [GBB+06, p. 303].
With respect to profiling applications it is obvious, that Object.notifyAll is very inefficient

and causes more performance impact compared to single notifications. It should be task of
the profiler to make this performance impact visible and measure it to some extend.

2.4 Java Virtual Machine Tool Interface

With Java 5 the Java Virtual Machine Tool Interface (JVMTI) was introduced which re-
placed the Java Virtual Machine Profiling Interface (JVMPI) and the Java Virtual Machine
Debug Interface (JVMDI). The JVMTI is a native programming interface to create tools
for inspecting the state and to control the execution of an application running in a JVM.
Therefore it can be used to create tools which can be used for: profiling, debugging, monitor-
ing, thread analysis, and coverage analysis tools [Ora07]. The following section summarizes
the article Java Virtual Machine Profiler Interface [VL00] describing the general design and
architecture of the interface. Only slight adaptions were made, since the basic ideas did not
change in the transition from JVMPI to JVMTI [O’H11].
The JVMTI offers an interface to support the development of a profiler. This is an

alternative approach to direct profiling support. This way different profilers can be used
with the same Java Virtual Machine and the same profiler can be used with different virtual
machines – it decouples the JVM from the presentation of the profiling information. Figure
2.3 illustrates the typical overall architecture.
The profiler agent and the Java Virtual Machine are executing in the same process. The

binary function-call interface enables both to interact with each other. The profiling data

12

is sent, by using a communication protocol, to the profiler front end. The profiler front end
presents the data. In general the profiler agent is implemented as a shared library. This
agent is loaded together with the Java Virtual Machine. The JVM looks for a specified
entry hook and both, agent and JVM, initialize a pointer table for the provided JVMTI
functions [VL00].
The JVMTI belongs to the event-based profilers. Thus event hooks are provided by the

interface which can be used to obtain more specific data related to the triggered event.
Every event type has to be activated separately in the profiling agent in order to receive
notifications. This allows it to minimize the overhead from the beginning. Every event
callback includes a JNI2 environment pointer in order to facilitate JNI usage. To give an
idea of the event mechanism some examples are given [Ora07]:

Thread Start Thread start events are generated by a new thread before its initial method
executes.

Thread End Thread end events are generated by a terminating thread after its initial
method has finished execution.

Method Entry Method entry events are generated upon entry of Java programming lan-
guage methods (including native methods).

Method Exit Method exit events are generated upon exit from Java programming language
methods (including native methods). This is true whether termination is caused by
executing its return instruction or by throwing an exception to its caller.

Monitor Contended Enter Sent when a thread is attempting to enter a Java programming
language monitor already acquired by another thread.

Monitor Contended Entered Sent when a thread enters a Java programming language mon-
itor after waiting for it to be released by another thread.

How the callback functions are implemented is shown exemplary in listing 2.2. The call-
back function provides a pointer to the JNI and JVMTI environment. Further function
parameters offer information about the present event. In this case it is possible to gain
information about the currently executing thread and the method which is entered.
The design for the JVMTI is sophisticated with respect to cost attribution to specific

execution contexts, especially in a multithreaded environment. The developers have decided
to present information at a method call level, since they believe there is little reason to
attribute cost to a finer granularity than a method, the source code line number and where
the method was executed.

2Java Native Interface is a framework which enables the developer to make calls from a native application
to a Java application and vice versa.

13

static void JNICALL callbackMethodEntry(jvmtiEnv *jvmti_env,
JNIEnv *jni_env, jthread thread, jmethodID method) {

enter_critical_section(jvmti);
{

jvmtiThreadInfo threadInfo;
char *methodName;

jvmti->GetThreadInfo(thread, &jvmtiThreadInfo);
jvmti_env->GetMethodName(method, &name, NULL, NULL);

std::cout << threadInfo.name << " " << methodName << std::endl;
}
exit_critical_section(jvmti);

}

Listing 2.2: JVMTI callback function which prints the name of the executing thread and the
current method name every time a method is entered

It is argued, that a flat profile, which would only consist of the methods’ execution time,
does not contribute enough information. For instance, the fact that a time consuming
method was invoked has little use. To counter this problem, it is suggested to make use of
the GetStackTrace function. The function generates the dynamic stack trace of a thread.
This way it is possible to learn which part of the program contributed to the invocation of
the time consuming method. The concept of adding a stack trace in order to learn about
the context is a general strategy to improve the information gain [VL00].

2.4.1 Thread-Safety

The profiling agent interacts with a multithreaded environment, on this account the agents
design has to be thread-safe as well. This applies in particular when accessing static or extern
data within the event callbacks, but also when calling native system functions. Ideally all
event callback functions are designed in a re-entrant style. The simplest way to implement
this is to create a single raw monitor3 at the beginning and use this monitor in every
callback function. This assures: only one callback function is active at any given point in
the time. The use of a raw monitor can already be seen in figure 2.2. The actual function
code is wrapped inside two function calls which acquire and release the monitor lock. Their
definitions can be seen in listing 2.3.

2.4.2 Usage

Different functions provided by the JVMTI facilitate the implementation of different kind
of profilers. The task of profiling the methods’ execution time can be realized by using
code instrumentation: measure the time by calculating the system time difference between

3A raw monitor is basically a Java monitor in a native environment.

14

static void enter_critical_section(jvmtiEnv *jvmti)
{
jvmtiError error;
error = jvmti->RawMonitorEnter(gdata->lock);
Agent::Helper::checkError(jvmti, error, "Cannot enter with raw monitor");

}

static void exit_critical_section(jvmtiEnv *jvmti)
{
jvmtiError error;
error = jvmti->RawMonitorExit(gdata->lock);
Agent::Helper::checkError(jvmti, error, "Cannot exit with raw monitor");

}

Listing 2.3: Defining functions for acquiring and releasing a raw monitor in order to establish
mutual exclusion

entering the callback function for MethodEnter and MethodExit. Another typical task is
heap profiling. Heap profiling can be implemented by using bytecode instrumentation4 to
tag objects on every allocation, react to the event ObjectFree and obtain the stack trace to
identify busy heap allocation sites.
Taking concurrency into account thread and monitor profiling is especially interesting.

Frequently contended monitors can be tracked by hooking to the MonitorContendedEnter
event and monitors being held for a relative long time can be tracked by hooking to the
MonitorContendedEntered event [VL00]. Thread profiling can be implemented by tracing
the threads states. The thread states primary utility is as a source of debugging information
[GBB+06, p. 251]. In JVMTI a threads state can be received by the function GetThreadState.
The returned value can be classified within the decisions in figure 2.4.
Within the Java programming language a threads state can also be received by invoking

Thread.getState. The state defined in java.lang.Thread.State, however, is only a subset of
the states returned by the JVMTI function. The state received by the JVMTI function can
be mapped to java.lang.Thread.State by using appropriate conversion masks [Ora07]. This
raises the question, whether the profiling agent should deliver only the mapped states or the
JVMTI states. Since the set of JVMTI states is too versatile an intermediate solution is
chosen. The profiling agent will basically deliver the virtual machine state. When appropri-
ate another state might be returned, for instance when the thread is sleeping, the delivered
state will be Sleeping instead of Timed Waiting.

2.4.3 Overhead

Injecting a native profiling agent into a Java Virtual Machine influences the program execu-
tion no matter what. Thus using a profiler adds overhead. Native code is executed between

4Bytecode instrumentation is a process where additional bytecode is added to the bytecode of a set of
classes before they are loaded by the virtual machine.

15

Alive?

Alive Not alive

Suspended? Why not alive?

New TerminatedSuspended Not suspended

Interrupted?

Interrupted Not interrupted

In native?

In native code In Java code

What alive state?

Waiting Runnable Blocked

Timed wait?

Indefinite Timed

Why waiting?

Object.wait LockSupport.park Sleeping

Figure 2.4: Java thread state according to the JVMTI

Java code, bytecode is used to instrument Java classes or further agent threads are launched
which execute their tasks concurrently in addition to the rest of the Java threads. Most of
the time the profiling agent will slow down the Java program significantly. For example,
instrumenting every method called in Java can easily slow down the execution by multiple
times. The consequence is, that the reported execution time or measured clock cycles be-
come meaningless. Sophisticated overhead calculations could help to achieve real results.
The fact, however, that the L1 cache is changed due to instrumentation and that the Java
code is less efficient, will not change.
Unfortunately, this code can also introduce timing or synchronization artifacts. The pos-

sibility remains that these artifacts mask bugs which would occur otherwise. Bugs that
disappear in this manner are called Heisenbug [Ray96]. The problem will be generalized:
every alteration of the program execution due to the profiler agent will be considered as
Heisenbug, too. This includes, but is not limited to: alteration of the thread scheduling,
differences in the occurrence of certain interleavings and changed execution time. In section
4.4 an attempt is made to measure the described overhead which is produced by executing
the Java program while the profiler agent is loaded.

16

Chapter 3

Profiler

The development of the profiler can be understood in means of a software engineering process.
It is a piece of software with certain requirements, a chosen architecture and design and a
sophisticated implementation. This chapter focuses on the problems which were faced during
the development process and how they were approached.

3.1 Requirements

The ideal scenario is a program that automatically displays all the important data to the
user in a convenient and informative way. The important data are those which let the user
understand his profiled program with no questions left. Unfortunately it is not clear, what
are the important information. On the one hand this is due to the variety of programs and on
the other hand this is due to the number of collected data. Firstly, the task will be to collect
enough information with respect to concurrent Java and secondly, offer possibilities to filter
the information when there are too many which would otherwise result in an information
overload. The functional requirements are addressing the problem statement in section 1.2.
They are described in the following:

Thread Overview A general overview of the threads should be displayed, including their
names, priorities and especially its state.

Monitor Overview A general overview of the monitors should be displayed, including the
threads relation to the monitor.

Monitor Log Events which involve a Java monitor should be presented, for instance lock
acquisition, waiting and signaling, or thread contention.

Visualization The profiled information should be visualized in order to ease the understand-
ing of the data. For instance a resource-allocation graph can be used to display the
threads and how they are related to the present locks.

17

JVM Process

Java Virtual
Machine

Tool Interface

Events

Control

Profiler Process

Profiling Agent

Event Callbacks

Utilities

Message Service

Profiler Front End

Model

View
javax.swing

ControllerSe
rv

ic
e

C
o

m
m

u
n

ic
at

io
n

P

ro
to

co
l

Figure 3.1: Architecture of the profiler

Stack Traces Extensive use of stack traces should be made. This way the profiled data can
be put into a context.

Method Profiling Measuring how much time was spent in which part of the program defined
on a method call level.

Logging Logging of every recorded event in order to cope with the number of data. This
way it is possible to go back in time and inspect a past state of the profiled application.

Non-functional requirements should be:

Efficiency As profiling has a great impact on the execution, the overhead should be mini-
mized as good as possible.

Portability The profiler should be usable on different platforms which support the Java
platform as well.

3.2 Architecture

As proposed by the article Java Virtual Machine Profiler Interface [VL00] the profiling
agents front end typically executes in its own process. This is due to two reasons. Firstly,
profiling has already strong impacts on the execution of programs. Using a graphical user
interfaces would increases the impact even more. Secondly, the target virtual machine might
not run on the local machine. A profiling agent with a graphical user interface would be
useless when started on a distant server machine. Thus the architecture illustrated in figure
2.3 will be maintained.
A more detailed illustration of the architecture can be seen in figure 3.1. The architecture

consists of three components: the profiling agent, a communication protocol and the Java
front end. The agents inner structure is based on three components as well. The core of the

18

implementation manages all the event callbacks. Auxiliary functions can be found in the
namespace Utilities. They encapsulate functions which help to extract more information out
of the data provided by the JVMTI. The agent uses a client socket which is located in the
Message Service class. The data is prepared and serialized into a message which implements
the communication protocol. The message is sent via the socket to the target host.
The Java front end listens on a server socket for incoming messages. The task for com-

munication is encapsulated in the Service package. Every received message is deserialized,
processed and displayed on the graphical user interface. Since the Java front end uses Swing
to implement the visualization the overall structure is based on the model-view-controller
architecture. The model is basically the representation of the profiled JVM.
In the decision of the transport protocol TCP was chosen over UDP as packet loss and

packet duplicates cannot be tolerated. When measuring the relative execution of a method
this is omittable. When a message is missed out which contains information about a monitor
action problems can evolve. On the one hand it would be confusing for the user as it is
expected to see every possible step of the synchronization. On the other hand this could
lead to errors due to message processing in the front end, for instance, when constructing
the resource-allocation graph.
The task of the Java front end is not limited to displaying the received data. The data

is vague and leaves room for interpretation. Therefore also the Java front end implements
logic for processing the data. For instance, message can contain information about threads
and their current state. The Java front end watches the threads for state changes and when
they occur, the total time a thread has spent in the previous state is calculated.

3.3 Design

The design is a refinement of the requirements and the architecture so far. It gives a more
concrete description of how the functionality should be implemented. Since the profiler deals
with different kind of data, it is obvious to present these data in different views. These views
are separated by the problems the profiler ought to solve. With respect to the graphical user
interface the views are separated by different tabs. There are two kinds of data: data which
is counted, for example how often a certain event has occurred and data which relates to
a greater context, for instance an event which occurred and influenced a present object.
Information within a greater context is modeled as log entry. Counts and log entries are
typically presented in a tabular form. When it is feasible, a more graphical representation
is chosen instead.

19

3.3.1 Thread Overview

The thread overview view should give a brief overview of the threads which were active at a
time during the profiling. This includes a list of all threads and their available information
describing their state. Further these information are visualized: on a pie chart diagram the
threads’ state distribution can be tracked and on another chart the thread state over time is
displayed. This view serves as an entry point for the user to see which threads are involved.
The thread state visualization might indicate the current behavior. A pie-chart with the
majority of threads being blocked indicates heavy monitor contention.

3.3.2 Monitor

The JVMTI allows to gain additional information about the usage of a Java monitor. The
information is limited to the following: the number of times the owning thread has entered
the monitor, the number of threads waiting on a monitors condition and the number of
threads waiting to be notified by other threads. For the waiting threads and threads waiting
to be notified a list of pointers to the actual JNI thread object jthread is also receivable.
In the requirements it was stated that stack traces will be used as an overarching concept.
Since the actual threads waiting can be gained, their current stack traces will be presented,
too. This will help to learn where and maybe why the threads are waiting.

3.3.3 Monitor Log

There are two kinds of actions which are performed in context of a certain monitor: lock-
ing and waiting and signaling. The locking will be displayed in means of acquisition and
release of locks and the waiting and signaling will be displayed in means of invocations to
Object.wait, Object.notify and Object.notifyAll. For ordering purposes timestamps will be
used to uniquely identify each event. Since profiling is about measuring, the time spent
during two events will be calculated and displayed. It was discussed how the number of
events can easily lead to an information overload. A typical method to counter this issue
is filtering. Therefore it is possible to filter the monitor log by event types and by threads.
This way, for instance two threads and their actions can be easily compared.

3.3.4 Event Log

When profiling, logging is an indispensable requirement. It is not sufficient to display just the
current state as the graphical user interface is updated too frequently. Therefore all recorded
events should be logged. In order to do so, the following design approach was chosen.
The JVMTI is an event-based profiler gathering the information for each occurred event.
Therefore the data is logged per event, too. The following event types are distinguished:

20

Thread Event A thread event contains information about a threads’ life cycle, for instance
whether a thread has started, has terminated or its state has changed.

Monitor Event A monitor event contains information about a Java monitor, for instance
locking or signaling and waiting. An example of locking is when a thread cannot
enter a monitor since it is owned by another thread. In this case the owning thread is
contained in this event.

Method Event A method event contains information about the execution of a method, for
example which thread executed the method, how long it took and how many CPU
clock cycles were consumed since then.

3.3.5 Method Profiling

Since the subject is about measuring program execution, it is obvious to deal with the
measurement of method execution in Java. Method measurement can be used to discover
and locate performance bottlenecks. Thus the question arises in which part of the program
is the most time spent? Other values which could be measured are the total number of
method invocations, which thread invoked which method or from a debugging perspective:
which method was called from which method?
It was already discussed that profiling adds unpredictable overhead to the program being

profiled. The JVMTI counters this with the event-based design. Using a method start and
a method end as an event hook, however, eliminates these advantages. Based on the type of
the profiled Java program, reacting to every method invocation can lead from low to very
high performance impact. Typically there are two types of method profiling [VL00]:

Tracing On every method enter and on every method exit native agent code is executed in
order to measure the time spent in the method. The greater the number of method
invocations in the Java program, the more the speed of the Java program will slow
down.

Sampling The profiler dumps periodically the stack traces of every thread and analyzes
them in order to assign a cost unit to the stack trace. The cost unit could be used,
for instance, to find the slowest part of the code. Sampling adds a lot less overhead
to the profiled application compared to Tracing. It is, however, more likely that small
methods are missed completely.

Tracing has the advantage of observing the total number of method invocations. Some-
times the overhead can be ignored, when the performance impact does not make the profiling
impossible. Since tracing works with high granularity the relative method execution time
can be calculated and displayed in percent. When nearly the entire time is used to execute

21

one method, there is no need of knowing how long it took, when the goal is to find the
slowest part of the code. To reduce the overhead filters can be introduced. Defined through
the user only certain methods are included or some methods are excluded while profiling.
From these two types only the tracing is implemented in this profiler.

3.4 Implementation

The implementation section covers the most details in solving problems with respect to the
programming part of developing the profiler. These problems arose during the implementa-
tion of the software. It will be presented how some of the design choices are implemented in
the end.

3.4.1 Communication Protocol

One of the most crucial parts is the implementation of the communication protocol. Since it
forms one of the three major components in the architecture it is necessary to have a flexible
and extensible implementation. This way it is assured that newly introduced types of data
can be easily integrated.
At first the textual format XML was chosen. A single XML document was used to serialize

the information of one event. Even though the basic implementation worked out very well,
problems emerged due to the continuously growing set of information which had to be
preserved in a single document. With this continuously growing set of information the effort,
to write the document construction on the one side and to write the document parsing on
the other side, grew equally.
For this reason the communication protocol protobuf is used now instead. Protocol Buffers

[Goo11] is a way of encoding data into a serialized form. The advantage is that the code to
access the data is generated. This way the integration into different language can be done
without further effort. This way Protocol Buffers is used as inter-process communication
between the two languages C++ and Java. The structure of a protobuf message is specified
in proto text files. Once the file is defined, the protobuf compiler generates the corresponding
data access classes for the appropriate programming language.
Protobuf describes its records with a structure identified by the keyword message. It con-

tains a series of key-value pairs, similar to the record type struct in C. For the communication
protocol all possible data is described in one message type. Confining all data within one
message has the advantage, that all the data can be received from one object. Even if the
structure of this message changes, the class type will not change. For that purpose there is
only one message type: AgentMessage. A message, however, can contain further messages.
An excerpt of the protobuf file, used to model the messages, is shown in listing 3.1. Every

22

option java_package = "de.fu.profiler.service";
option java_outer_classname = "AgentMessageProtos";

message AgentMessage {

required int64 timestamp = 1;
required int64 systemTime = 2;
required int32 jvmPid = 3;

// . . .

optional ThreadEvent threadEvent = 4;
optional MonitorEvent monitorEvent = 5;
optional MethodEvent methodEvent = 6;

}

Listing 3.1: Describing the communication protocol with the protobuf format

message ThreadEvent {

repeated Thread thread = 1;

enum EventType {
STARTED = 0;
ENDED = 1;

}

required EventType eventType = 2;
}

Listing 3.2: Defining single messages for communicating the occurrence of an event

message has a timestamp, information about the current system time and the process iden-
tifier of the observed JVM. As the JVMTI architecture is event-based the message protocol
was designed in a similar way. Further messages, for instance ThreadEvent and Moni-
torEvent are encapsulated inside the AgentMessage and describe an occurred event. They
are optional, which means there has to be no message when constructing the AgentMessage.
This allows a flexible composition of different message types. Each field in the message has
a unique tag number. These tags are used for identification purposes in the message binary
format. Besides, tags with values from 1 to 15 take one byte to encode and tags with values
from 16 to 2047 take two bytes to encode.
One type of event message, the ThreadEvent, is shown in listing 3.2. Since protobuf allows

an easy modeling of entities, further messages are used to describe JVMTI related objects,
for instance a thread or a monitor. This can also be seen in listing 3.2. The ThreadEvent
message can have an arbitrary number of Thread messages. The definition of a thread
message can be seen in listing 3.3.
The object-oriented aspects of C++ and Java allow to access the data with only few lines

of code. This way the whole parsing process which would have been required with XML is

23

message Thread {

required int32 id = 1;
required string name = 2;
required int32 priority = 3;

enum State {
NEW = 0;
RUNNABLE = 1;
BLOCKED = 2;
WAITING = 3;
TIMED_WAITING = 4;
TERMINATED = 5;

}

required State state = 4;
required bool isContextClassLoaderSet = 5;
required bool isDaemon = 6;
optional int64 cpuTime = 7;

}

Listing 3.3: Modeling JVMTI related entities by additional messages

message MemoryEvent {

required Thread thread = 1;

enum EventType {
ALLOCATION = 1;
FREE = 2;
}

required EventType eventType = 2;
required string className;
required int32 size;

}

Listing 3.4: Extending the current message protocol by a hypothetical new event

avoided. This advantage was significant during the software development. The requirements
were not clear from the beginning. This way it was possible extend the present message for
new information ad-hoc. For example, if the profiler agent should start to collect information
about the heap it could be easily integrated into the current AgentMessage by adding the
code shown in figure 3.4.

3.4.2 Ordering the Messages

Another problem arose when collecting and displaying information which rely on a causal
ordering of events. Since the profiling agent is executed concurrently, the sent messages
are not necessarily in the same order as the Java code is executed. This way a series
of information could break the expected order. For instance, the graphical user interface
displayed, that a certain thread had left Object.wait before even entering the method. In

24

extern "C" {
__inline__ uint64_t rdtsc() {

uint32_t lo, hi;
__asm__ __volatile__ (

"xorl %%eax,%%eax \n cpuid"
::: "%rax", "%rbx", "%rcx", "%rdx");

__asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
return (uint64_t) hi << 32 | lo;

}
}

Listing 3.5: Generating timestamps by reading the 64-bit register Time Stamp Counter on
x86 processors

order to establish a mechanism which ensures, that the happened-before relationship is
maintained, timestamps were introduced. The first approach taken, was to use the UNIX
system function clock_gettime.
With respect to the non-functional requirement of portability, however, it is questionable

whether there are no superior ways to generate timestamps, since using clock_gettime is
system-dependent. On x86 architectures the RDTSC instruction is available. It returns a
64-bit time stamp counter. With every clock cycle this counter is increased. The value is
read by using Assembly which can be seen in listing 3.5.
Taking multiprocessor systems into account, another problem arises. There are different

counters across the available processor cores and they do not synchronize with each other.
Since the agent thread of the profiler runs in its own thread it is unlikely different timestamp
counters will interfere. The possibilities remains that the agent thread is rescheduled on
another core. Therefore no safety guarantees can be made that the timestamps are totally
ordered and correct. Practice with the developed profiler has shown, that message reordering
did not occur with the applied use cases from section 4.2.

3.4.3 Waiting And Signaling Events

Unfortunately, the JVMTI does not provide for every preferable event a callback function
with sufficient information. This problem was faced the first time when implementing the
monitor logging mechanism for waiting and signaling events. This includes invocations to
Object.wait, Object.notify and Object.notifyAll. The JVMTI offers the event Monitor Wait
for entering Object.wait and Monitor Waited for leaving Object.wait. For those events a local
JNI reference to the Java monitor object is given. Thus it is easy to identify the monitor
and gain information, for instance how many threads are waiting on it.
Whereas the signaling part done by the notification does not provide a separate event

hook. For this reason the event MethodExit was used checking every time, whether the
method name is notify or notifyAll, the class name Object and the method itself executing

25

in native code. The downside is that MethodExit does not provide a local JNI reference to
the Java monitor object. Thus the total state cannot be tracked with every event. But since
profiling is about profiling the application in large sense this should satisfy the requirements
at first glance. It also shows very clearly the limitations of the JVMTI without further
modification of the profiled JVM.

3.4.4 Contextualization by Stack Traces

Another issue arose in the same usage: profiling waiting and signaling events. Since the
Java programming language uses monitors also in their Java class library the profiled events
might occur more often than expected. Therefore it has to be distinguished when a method
is called due to library implementation and when a method is called from the profiled Java
application. Even if there is no library code accessing the waiting and signaling functionality,
a large application might have different components using this mechanism. Hence the context
of a method invocation is important. During profiling for testing purposes the number of
calls to Object.wait and Object.notifyAll differed.
In order to solve this problem, a complete dump of the available stack traces was added

to the appropriate AgentMessage. When a new thread comes into existence a Java stack
is allocated for it by the Java Virtual Machine. The Java stack is composed of multiple
stack frames [AGH00, sec. 12.6]. These stack frames help to identify what the thread is
currently executing. Analyzing the stack trace is an approach to put the events into context.
Answering questions like: where is Thread-2 trying to acquire the monitor lock? The JVMTI
offers the function GetStackTrace to be applied on a specified thread. Further functions, for
example GetMethodName can be applied to receive more details.
The stack trace indicates in which scope the method was invoked. This way it was revealed

that calls to Object.notifyAll were made within java.util.ResourceBundle in the method
endLoading. This is simply due to the reason System.format uses ResourceBundle.

3.4.5 Contention and Deadlock Detection

The simplest case of deadlock is deadly embrace. A deadly embrace evolves when a thread
holds a lock forever and other threads try to acquire this lock. The consequence of this is
that the other threads will block forever waiting [GBB+06, p. 205].
In order to detect a deadlock several approaches can be taken. A Java thread dump

provides already information whether a Java deadlock has occurred. A Java thread dump
can be received by several ways for instance by tools like jps and jstack or by sending an
operating system dependent signal to the JVM. The JVMTI does not provide a function to
obtain the current thread dump. Detecting deadlocks, however, can be realized by using the
given information when a thread contends with another thread for entering a monitor. The

26

logic for detecting a deadlock is implemented in the Java front end.
A resource-allocation graph can be used to detect the deadlocks. A resource-allocation

graph consists of processes P and resources R [SG98, p. 210]. The resources can have
different numbers of instances. From the Java perspective P is a thread and the resource R

is a monitor lock. A monitor lock can only be acquired or released, having only one instance
makes it a binary resource. A directed edge from a monitor to a thread means the thread
owns the lock of this monitor. A directed edge from a thread to a monitor means the thread
is waiting to acquire the lock of this monitor. The following lemmata state when a deadlock
has occurred.

Lemma 1. If the graph contains no cycle, then the state does not contain a deadlock.

Lemma 2. If the graph contains a cycle and every resource is a binary resource, then the
state contains a deadlock.

Two examples of these graphs are shown in figure 3.2.

T1

T2

M1

T3

(a) Thread t2 and t3 are in contention with
Thread t1, since thread t1 owns the
monitor lock

T1

M2

T2

M1

(b) Thread t1 and t2 are waiting for each
other to release the monitor lock – a
deadlock occurred

Figure 3.2: Illustrating different resource-allocation graphs

The JUNG library [OFN11] is used to implement a visualization of the monitor contention
by constructing and drawing the appropriate resource-allocation graph. This is not necessar-
ily a gain in information, but should give an interesting view of the monitor lock distribution
in general. The JVMTI offers two event hooks which help to track the locking.

Monitor Contended Enter Sent when a thread is attempting to enter a Java programming
language monitor already acquired by another thread.

27

Monitor Contended Entered Sent when a thread enters a Java programming language mon-
itor after waiting for it to be released by another thread.

This means, there will be no tracking of locks which are directly acquired without con-
tention and there will be no tracking of locks which are released while no other threads waits
on them to be released. For the deadlock detection this is no problem, since only contention
can evolve to a deadlock. When the event Monitor Contended Enter happens it means a
graph with 3 nodes and two edges can be constructed at once. When the event Monitor
Contended Entered happens it means one edge will disappear and one edge will change the
direction. Finally the resource-allocation graph is limited to deadlock detection. Hence, not
every single allocation step can be tracked.

3.4.6 Method Profiling

In order to implement one of the discussed methods of method profiling the AgentMes-
sage was simply extended by a MethodEvent. Within this work only the type tracing was
implemented. The procedure can be described in four steps:

1. For every available thread a stack is allocated.

2. When a method is entered, the current system time is retrieved and the result is pushed
on the appropriate stack.

3. When a method is left, the timestamp is popped and the difference is calculated. A
MethodEvent message is generated and sent to the Java front end.

4. Finally, the results are cumulated in the Java front end.

This way no method is left out and the total call order is maintained. The emerging
overhead, due to the fact of sending a message each time a method is left, is huge. It
was already proposed [VL00] to make heavy use of filters in this case. At a minimum it is
reasonable to filter every method of a class from the packages com.sun, java, javax, sun or
sunw. They include the whole Java library code. This way the profiler focuses on the code
which can be actually influenced by the developer.
It is, however, important to leave the choice whether these classes should be filtered to the

user. With an active filter on the java package, the java.util.concurrent package will not be
profiled neither. In this case, the profiler cannot keep track of the actions invoked by other
synchronization structures, for instance the number of Semaphore.acquire invocations.

28

Chapter 4

Usage

In order to test the profiler this chapter will provide a demonstrative overview of the profilers
capabilities. First, in section 4.1 the developed profiler will be presented and how it is used.
This is followed by a set of use cases. The use cases will demonstrate the implemented
functionality of the profiler and what cognition can be gained. Seven use cases examine
different aspects of the profiler. This is followed by an evaluation in section 4.3 which will
reflect on the results, where potential weak points are and what solutions could be applied
to counter these weak points. In section 4.4 the caused alterations in program execution by
using the profiling agent will be measured and evaluated as well.

4.1 Manual

The system on which the target’s application will be profiled has to be prepared. The
profiling agent is compiled as a shared library: libjcp.so. This file has to be inserted into the
library path. Whether Java can load the profiler agent, can be tested afterwards by invoking
the command shown in listing 4.1.

$ java -libagent:jcp

Listing 4.1: Testing whether the system can find the profiler agent

If no error is displayed, telling that the library agent could not be found, everything
should work accordingly. Next, the Java front end has to be started by executing the java-
concurrency-profiler.jar on the machine which should be used for receiving the results. If
no port number is passed to the front end it will listen per default on port 49125. If the
front end should listen on another port it has to be executed with passing the port number
as command-line argument. This can be seen in listing 4.2.

$ java -jar java-concurrency-profiler.jar [port]

Listing 4.2: Starting the Java front end with passing an optional port parameter

29

Figure 4.1: Displaying the front ends welcome screen and waiting for incoming results

Finally, in order to start the profiling itself the Java application has to be started in a
similar way described above. If, however, another machine is used for receiving the results,
additional parameters are required: the host and the port of the target machine. An example
is shown in listing 4.3. Otherwise it will try to connect to the localhost on port 49125.

$ java -agentlib:jcp=[host],[port] HelloWorld

Listing 4.3: Starting the profiling process with two optional parameters specifying the Java
front ends network address

When the Java front end is started a window frame should appear. Only the the tab
Welcome should be seen, as in figure 4.1, with similar instructions to the described above.
A new tab will appear, when the first data is received from the profiling agent. The panel
attached to the tab has different views which can be selected by additional tabs. The initial
view will be the general overview, which is shown in figure 4.2. The general overview consists
of a table and two diagrams. The table contains information about the threads which were
active at a time during profiling. The information about a thread consist of its identifier, its
name, its priority, its current state, whether it has an associated context class loader, whether
it is a daemon thread and the estimated CPU time utilized by the thread in nanoseconds.
The pie chart diagram shows the current threads’ state distribution. The bar chart shows
for each thread how much time was spent in which state in percent.

30

Figure 4.2: Serving as an entry point the general view shows the involved threads and their
states

The monitor log view, which can be seen in figure 4.3, shows the existing log entries which
contain information about actions related to the present Java monitors. The log entries
are displayed in a table. An entry is represented by a row in the table. Every entry has
information about the time, since the application has started, the thread which performed
the action, the type of action, the class type of the involved monitor, the method in which
the action was performed and if available, the previous and the new state of the executing
thread.
On the right side of this view is a list of checkboxes which allows to filter the content of

the table. One the one hand it is possible to filter the table by certain event types. For
instance, when deselecting the Waiting checkbox, all log entries with an action related to
Object.wait are hidden. On the other hand the table can be filtered by threads, too. This
list of checkboxes is created dynamically. Obviously only present threads in the monitor log
can be used for filtering.
When selecting a log entry the graphical user interface will show the stack trace of every

thread which was present when the event occurred at the bottom of this view. The stack trace
is displayed in a tree form. The bottom of this view has another tab containing statistical
information about how often a certain event has occurred per thread. For instance, how often
has a particular thread contended when trying to acquire a monitor lock. The statistical
panel is independent of the selected log entry.

31

Figure 4.3: Tracing the actions performed on the profiled monitors and visualizing a complete
stack trace for each log entry

In figure 4.4 the monitor view is shown. The monitor view lists all the used Java monitors
in a table. The table contains information about the class type of the monitor and its
current state. The state is described by three information: the number of times the owning
thread has entered the monitor, the number of threads waiting to enter the monitor and
the number of threads waiting to be notified by other threads. When a row is selected in
the table further information are displayed at the bottom of this view. In a tree form both
types of waiting threads are displayed. The concept of contextualizing by using stack traces
is given here, too. If there are any threads waiting, it is possible to get their current stack
trace by expanding the corresponding thread node.
A screenshot of the resource-allocation graph view can be seen in figure 4.5. All present

threads are represented on the panel as red circles, even though they are not related to the
monitors at all. The monitors are represented as gray squares. For identification purposes
the threads are labeled with their names and their identifier and the monitors are labeled
with their class type and their identifier. When a circle in the graph is detected by the front
end the tab title will turn its color to red and change the label from Resource-Allocation
Graph to Deadlocked.
Finally, the method profiling view is shown in figure 4.6. The information is displayed in

a table as well. Each row of the table represents a method. The information provided by
the table consists of the relative time spent in the method expressed in percent, the average

32

Figure 4.4: Presenting the profiled monitors and information about their usage

Figure 4.5: Constructing dynamically a resource-allocation and checking for deadlocks

33

Figure 4.6: Presenting the method profiling information in a tabular form which can be
filtered by methods

time spent expressed in milliseconds, the average clock cycles consumed when executing the
method and the total number of invocations. The table can be sorted by clicking on the
column headers. The concept of filtering is applied here, too. At the bottom of the view a
name can be entered into a text field. Only methods containing this name will be shown. It
is suggested to start with the prefix of the method, hence the package names.

4.2 Use Cases

The following use cases will demonstrate the capabilities of the profiler. The results of the use
cases are going evaluated afterwards. There are use cases to demonstrate how the profiler
can strengthen the conceptual understanding of the underlying concurrency mechanisms.
There are also use cases which are related more to practical, respectively real examples.

4.2.1 Extending a Thread-Safe Class

First of all the example which was addressed in the problem statement in section 1.2 will be
revisited. In the listing 4.4 the code is shown again.

34

public class EnhancedSynchronizedList<T> {
public List<T> list =
Collections.synchronizedList(new ArrayList<T>());

public synchronized boolean putIfAbsent(T x) {
boolean absent = !list.contains(x);
i f (absent) {
list.add(x);

}
return absent;

}
}

Listing 4.4: Revisiting the problem of extending a thread-safe class

Problem

Extending a thread-safe class does not imply the thread-safety is retained. The method
Collections.synchronizedList returns a thread-safe list. The list is extended by the method
pufIfAbsent, which only adds an element, if the element is not present yet. The question
was: is the profiler able to reveal information about the thread-safety?

Approach

Since thread-safety is about encapsulating the needed synchronization to a sufficient degree
[GBB+06, p. 18], the profiler will be used to trace how monitor of the list is accessed.

Profiling

Class Context

de.fu.profiler.examples.EnhancedSynchronizedList EnhancedSynchronizedList.putIfAbsent
de.fu.profiler.examples.EnhancedSynchronizedList$1 Runnable.run
java.util.Collections$SynchronizedCollection Collections$SynchronizedCollection.add

Table 4.1: Listing the profiled monitors and in which context each monitor was accessed in
the Extending a Thread-Safe Class example

Evaluation

Apparently there are more monitors than might have been expected in the beginning. The
class Collections$SynchronizedCollection was expected to be used as a monitor and its
method add is within scope of this monitor. EnhancedSynchronizedList$1 is the anony-
mous inner-class implementation of java.lang.Runnable which is used to execute the threads
accessing the list. The monitor of class type EnhancedSynchronizedList, however, should not
be present at all. The method putIfAbsent is synchronized on the EnhancedSynchronizedList
object instead on the Collections$SynchronizedCollection object.

35

public class EnhancedSynchronizedList<T> {
public List<T> list =
Collections.synchronizedList(new ArrayList<T>());

public boolean putIfAbsent(T x) {

synchronized (list) {
boolean absent = !list.contains(x);
i f (absent) {
list.add(x);

}
return absent;

}
}

}

Listing 4.5: Extending a thread-safe class by using client-side locking

The problem is, that the synchronized modifier of the method putIfAbsent implies, that
the class defining the method putIfAbsent will be used as monitor. The class defining the
method is EnhancedSynchronizedList. A synchronized block using list as the lock has to
be used in order to reestablish thread-safety. This approach is called client-side locking or
external locking [GBB+06, p. 73]. The solution can be seen in listing 4.5.

4.2.2 Overhead of Santa Claus Problem

The Santa Claus Problem was original defined by John A. Trono [Tro94] and is a typical
exercise for undergraduate students when introduced to concurrency.

Problem

There are three parties: Santa Claus, nine reindeer and some elves. Santa Claus is sleeping
and can only be awaken by all nine reindeer or by three elves. When three elves are at
Santa, any other elf has to wait. Each member of a party is represented by a Java Thread
which executes its own task with dependencies to the described conditions.
In How to Solve the Santa Claus Problem [Ba98] Modechai Ben-Ari states the following

problem to the Java solution. Java can declare an arbitrary number of condition variables,
however, the signaling mechanism does not define which thread is notified, thus no FIFO
can be guaranteed. The absent of FIFO can lead to race conditions.
In the opposite to Ada 95 which specifies immediate resumption in Java the condition has

to be re-checked if the condition still holds. Further Modechai Ben-Ari states the basic prob-
lem in the Java implementation is the high-overhead which is due to the method notifyAll.
Every thread is reactivated and every thread has to re-check the condition.
Since reactivating a thread leads to context switches and context switches are expensive

[GBB+06, p. 230]. Since there are so many threads involved it would be interesting to

36

profile the mentioned overhead and see if it can be seen by the profiler. The idea is to see
how many threads are awakened and return immediately back to sleep. In the worst case
Object.notifyAll results in O(n2) wakeup where in the contrast O(n) would be sufficient to
do the task [GBB+06, p. 303].

Approach

For this problem useful information can be gained through the monitor log view. Since this
view presents the invocations of the methods Object.wait and Object.notify and records their
total occurrence, it should reveal the overhead. Further also statistical numbers collected
about method invocations could give proof for the produced overhead.

Profiling

The results are shown in the table 4.2 and 4.3.

Thread #wait #notify #notifyAll #contended #entered

Santa Clause 13 134 0 23 23
Elf-0 10 0 0 14 14
Elf-1 8 2 0 16 15
Elf-2 8 0 0 8 8
Elf-3 8 0 0 17 17
Elf-4 10 3 0 17 17
Elf-5 8 1 0 9 8
Elf-6 8 0 0 10 10
Elf-7 10 5 0 15 15
Elf-8 8 1 0 14 14
Elf-9 7 0 0 9 9

Reindeer-0 6 0 0 6 6
Reindeer-1 6 0 0 11 11
Reindeer-2 6 1 0 12 11
Reindeer-3 6 1 0 10 11
Reindeer-4 6 0 0 14 13
Reindeer-5 6 0 0 12 12
Reindeer-6 6 0 0 14 15
Reindeer-7 6 0 0 14 14
Reindeer-8 6 1 0 11 11

Table 4.2: Number of times a certain event has occurred in the Santa Claus Problem

37

Time (ms) Thread Action Context Old State New State

3539 Elf-0 invoked wait Elf.run Runnable Waiting
3544 Elf-7 invoked wait Elf.run Runnable Waiting
3551 Elf-6 invoked wait Elf.run Runnable Waiting
3553 Santa Clause invoked notify Elf.showOut - -
3555 Elf-6 left wait Elf.run Waiting Blocked
3560 Santa Clause invoked notify Elf.showOut - -
3566 Elf-0 left wait Elf.run Waiting Blocked
3633 Santa Clause invoked notify Elf.showOut - -
3636 Elf-7 left wait Elf.run Waiting Blocked
3639 Santa Clause invoked wait Santa.run Runnable Waiting
3684 Elf-2 invoked notify Santa.ask - -
3687 Elf-3 invoked wait Elf.run Runnable Waiting
3689 Elf-2 invoked wait Elf.run Runnable Waiting
3698 Elf-4 invoked wait Elf.run Runnable Waiting
3700 Elf-5 invoked wait Elf.run Runnable Waiting
3702 Elf-1 invoked wait Elf.run Runnable Waiting
3707 Elf-8 invoked wait Elf.run Runnable Waiting
3708 Santa Clause left wait Santa.run Waiting Blocked
3721 Santa Clause invoked notify Elf.showIn Blocked Runnable

Table 4.3: Logged access to the used monitors in the Santa Claus Problem

Evaluation

In table 4.3 only a fraction of the profiled results is shown, since these are only 19 entries from
a total number of 442 entries. The profiler uncovered the thread state changes during the
thread coordination. Every elf goes to sleep and is woken-up afterwards by the Santa Claus
thread. Taking the number of elves and reindeers into account there are a lot of context
switches due to thread coordination. The most invocations are done by the Santa Claus
thread, since this thread is the thread coordinator. This is also shown through the results
of figure 4.2. Santa Claus has with 13 calls made to Object.wait and a total number of 134
calls made to Object.notify the most invocations. Overall about 29, 4% of the time was spent
in Object.wait. Without contention due to monitor acquisition this might be negligible, but
the results show every entity taking part, contends from 6 times to 23 times, waiting for the
monitor lock to be released.

4.2.3 Fairness of Bounded Buffer

Another typical task in multithreading is the bounded buffer problem. A bounded buffer is a
multislot communication buffer which is shared between threads. Producer threads deposit
objects in the buffer and consumer threads fetch them. The buffer has a queue containing
those objects which have not been fetched yet [And99, p. 161]. A simple example of using
this pattern could be defined as following:

38

1. data is shared through a bounded buffer, capable of holding only a limited number of
items

2. the producer puts a series of text messages into the bounded buffer

3. the consumer thread retrieves the messages and prints them

This pattern is very typically for multi-processor programs as both processes share the
same data. The producer and consumer threads have to communicate. There are several
ways to implement this program. For this use case condition queues will be used the same
way as they were introduced in section 2.3.

Problem

Based on the capacity of the bounded buffer and the number of producer and consumer
threads the threads will have to contend for accessing the bounded buffer. When only
consumer threads have to contend with each other for accessing the bounded buffer, it
would be interesting to see, whether the profiler can reveal information about the fairness
of condition queues in Java. Will every consumer have the possibility to take its turn?

Approach

In order to track the events stated above, the monitor log will be appropriate as invocations
to Object.wait and Object.notifyAll and their related events have to be traced.

Profiling

The bounded buffer is profiled with the following configuration:

• bounded buffer capacity: 1

• number of producer: 1

• number of consumer: 4

• number of objects produced: 4

The results are shown in table 4.4, 4.5 and 4.6.

39

Time (ms) Thread Action Context Old State New State

570 Thread-0 invoked notifyAll BoundedBuffer.put - -
645 Thread-2 contended with Thread-1 BoundedBuffer.take - -
647 Thread-3 contended with Thread-1 BoundedBuffer.take Runnable Blocked
648 Thread-4 contended with Thread-1 BoundedBuffer.take Runnable Blocked
649 Thread-1 invoked notifyAll BoundedBuffer.take - -
650 Thread-4 entered after contention BoundedBuffer.take Blocked Runnable
653 Thread-4 invoked wait BoundedBuffer.take Runnable Waiting
655 Thread-2 entered after contention BoundedBuffer.take Blocked Runnable
657 Thread-2 invoked wait BoundedBuffer.take Runnable Waiting
668 Thread-3 entered after contention BoundedBuffer.take Blocked Runnable
669 Thread-3 invoked wait BoundedBuffer.take Runnable Waiting
677 Thread-1 invoked wait BoundedBuffer.take Runnable Waiting
5571 Thread-0 invoked notifyAll BoundedBuffer.put - -
5572 Thread-1 left wait BoundedBuffer.take Waiting Blocked
5574 Thread-1 invoked notifyAll BoundedBuffer.take Blocked Runnable
5575 Thread-3 left wait BoundedBuffer.take Waiting Blocked
5576 Thread-3 invoked wait BoundedBuffer.take Blocked Waiting
5577 Thread-2 left wait BoundedBuffer.take Waiting Blocked
5578 Thread-2 invoked wait BoundedBuffer.take Blocked Waiting
5580 Thread-4 left wait BoundedBuffer.take Waiting Blocked

Table 4.4: Logged access to the used monitors in the Bounded Buffer example

Thread Role #wait #notify #notifyAll #contended #entered

Thread-0 Producer 6 0 8 0 0
Thread-1 Consumer 12 0 5 0 0
Thread-2 Consumer 15 0 1 1 1
Thread-3 Consumer 15 0 1 1 1
Thread-4 Consumer 18 0 1 1 1

Table 4.5: Number of times a certain event has occurred in the Bounded Buffer example

Time (ms) Thread Action Context Old State New State

653 Thread-4 invoked wait BoundedBuffer.take Runnable Waiting
5580 Thread-4 left wait BoundedBuffer.take Waiting Blocked
5583 Thread-4 invoked wait BoundedBuffer.take Blocked Waiting
10585 Thread-4 left wait BoundedBuffer.take Waiting Blocked
10588 Thread-4 invoked wait BoundedBuffer.take Blocked Waiting
15601 Thread-4 left wait BoundedBuffer.take Waiting Blocked
15602 Thread-4 invoked wait BoundedBuffer.take Blocked Waiting
20598 Thread-4 left wait BoundedBuffer.take Waiting Blocked
20602 Thread-4 invoked wait BoundedBuffer.take Blocked Waiting
20631 Thread-4 left wait BoundedBuffer.take Waiting Blocked
20632 Thread-4 invoked wait BoundedBuffer.take Blocked Waiting
20635 Thread-4 left wait BoundedBuffer.take Waiting Blocked

Table 4.6: Filtered results of the monitor log for displaying the actions of a single thread

40

Evaluation

It can be easily figured out which thread fulfilled which kind of role by looking at the
results shown in table 4.4. Thread-0 is the producer, since the thread accesses the Bound-
edBuffer.put method. The rest of the threads are consumer. At the beginning all threads,
except Thread-0 and Thread-1 become blocked, because Thread-1 is the first consumer to
acquire the BoundedBuffer monitor lock. It is evident that only 1 consumer thread is able
to succeed. Even though the other threads are awakened, only Thread-1 is able always to
pass the condition. The other threads remain between Waiting and Blocking state.
For the collected statistics it is obvious that Thread-0 has the least contention, since there

are more consumer than producer. Further Thread-1 has the least calls to Object.wait, since
it succeeds all the time and has most of the calls to Object.notifyAll. In this case having
most of the calls to Object.notifyAll correlates to being the thread which is able to acquire
the monitor lock and execute the state dependent code. The incurring overhead can be
exemplary seen in figure 4.6 for one thread. Within a time period of 19982 ms Thread-4
does nothing except trying to acquire the monitor lock and go back into the Waiting state
again. Dependent of the implementation of thread blocking this will result in equal many
context switches.

4.2.4 Bottleneck in Concurrent Merge Sort

Merge sort is a divide and conquer algorithm. Since independent parts of a program are
not critical they can be executed concurrently without further synchronization mechanisms
[And99, p. 45]. In this implementation of concurrent merge sort a fixed number of threads
is used to distribute the task.
This can be realized by maintaining a list of threads. Whenever there are two free spots

in the list the recursion is executed by two newly created threads. If there is only one
free spot in the thread pool the recursion is executed by one newly created thread and the
second recursion is executed by the thread controller. If there is no spot in the thread
pool at all both recursions are executed by the thread controller. In order to guarantee
independent recursive calls, every time a new thread is created the thread controller waits
for its termination.

Problem

A concurrent program which relies on little synchronization is expected to execute very fast.
Therefore it would be interesting to find those parts inside the implementation where most
of the time is spent. Further it would desirable to observe on which threshold value the
produced overhead by using more threads exceeds the increase in efficiency.

41

Approach

The method profiling tab in the profiler offers an appropriate view to approach this problem.
The methods and their total time spent is displayed, this offers a good comparison to find the
slowest parts of the program. For the second problem this view is also useful. In addition
the bar chart displaying the thread states over time could be useful as well, whether the
threads’ states indicates the produced overhead by the thread creation.

Profiling

A list of 40.000 Integers is sorted concurrently by 2 threads and 1 control thread on a machine
with two processor cores.

Method Time (%) Time (ms) Clock Cycles #Invocations

Sorts.mergeSort 56,613 3,0 6.772.974 79998
ConcurrentMergeSort.main 5,738 24.290,0 54.921.034.003 1
Thread.join 4,185 4.429,2 10.014.723.311 4
Thread.run 4,155 8.794,5 19.885.212.945 2
Sorts.run 4,155 8.794,5 19.884.863.870 2
ConcurrentMergeSort.generateIntegerList 3,132 13.259,0 29.979.229.802 1
Random.nextInt 2,863 0,3 684.763 39999
Random.next 2,218 0,2 530.324 40000
Object.wait 2,092 4.428,5 10.013.413.368 2
Sorts.merge 1,139 0,1 272.660 39999
AtomicLong.compareAndSet 1,017 0,1 242.933 40000
AccessController.doPrivileged 0,775 65,7 148.542.818 50
PrintStream.printf 0,489 2.071,0 4.684.392.704 1

Figure 4.7: Methods in which most of the time was spent during the execution of Concurrent
Merge Sort

Evaluation

The most significant observation was the huge impact on the overall execution time. A list
of 40.000 Integers is typically sorted in about 188 ms on the machine used for profiling. On
the same machine the sorting took about 45.204 ms with the profiler agent being executed.
This is the first example on which the performance impact is actually noticeable.
Taking the results of table 4.7 into account, most of the time is spent in the method which

actual performs the sorting: Sorts.mergeSort. Apart from ConcurrentMergeSort.main which
executes the whole program, a large percentage of time is spent in the only synchronization
mechanism left: Thread.join. The next interesting methods are Random.nextInt which took
about 2, 8% of the total time. According to the results of the profiler it seems there is
little left for optimization. It could be interesting to research if it is possible to improve the
performance of Sorts.mergeSort by using other operations and other data structures.

42

A threshold value for indicating when the produced overhead by the thread creation
exceeds the increase in efficiency could not be found. It was visible to the profiler that more
and more threads had an increasing contention, because the threads’ states over time was
heavy influenced by the states Blocked and Waiting. Also the time spent in Thread.join was
increased from about 4% to 8%. But in the end these results were to vague to give an exact
threshold value.

4.2.5 Instrumenting Explicit Locks

ReentrantLock is a mutual exclusion lock with the same semantics as the monitor lock, but
with additional features, for instance timed lock waits, interruptible lock waits, fairness and
the ability to implement non-block-structured locking [GBB+06, p. 285]. ReentrantLock
implements the interface Lock which can be seen in listing 4.6. The equivalent for entering
and leaving a synchronized block are invocations to Lock.lock and Lock.unlock.

public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException();
void unlock();
Condition newCondition();

}

Listing 4.6: Interface definition of java.util.concurrent.locks.Lock

Problem

Mutual exclusion is a strong locking discipline. Often data-structures are mostly read and
only sometimes written. A read write lock strategy would allow multiple readers, but only
one writer at a time. This capability is provided by the ReadWriteLock interface, which
exposes two Lock objects, one for reading access and one for writing access. The interface
definition is shown in listing 4.7. Internally there is only one locking structure on which the
actions are performed. In some cases the ReadWriteLock performances better than mutual
exclusion and sometimes it performs slightly worse [GBB+06, p. 286].

public interface ReadWriteLock {
Lock readLock();
Lock writeLock();

}

Listing 4.7: Interface definition of java.util.concurrent.locks.ReadWriteLock

43

In the proceeding Relocker by Max Schäfer, Manu Sridharan, Julian Dolby and Frank Tip
a program is presented which transforms monitor locks into ReentrantLocks and Reentrant-
Locks into ReadWriteLocks. The performance trade-off can differ heavily. For their paper
a synthetic benchmark was implemented to test all three synchronization mechanisms on a
Map. A defined number of writer and reader threads is spawned which execute random read
and write operations to the Map. The throughput is measured in number of total operations
per second [SSDT11].
The mix of reader and writer threads and the chosen architecture influences the outcome

of this comparison. It would be interesting to see in how far the performance difference can
be detected when profiling the same synthetic benchmark.

Approach

The three synchronization mechanism are working internally differently. On that account
not the same strategy can be used to approach this problem.

1. Access to the monitor lock can be tracked in the usual way of observing the monitor
log view and evaluating the statistical results on the occurred events.

2. Access to ReentrantLock and the ReadWriteLock is harder to track, since the JVMTI
does not provide event hooks like it does for monitor related events.

ReentrantLock and ReadWriteLock, however, are implemented by using AbstractQueueSyn-
chronizer. From the Java source code, as seen in listing 4.8, it can be derived that the lock
is gained by invoking AbstractQueueSynchronizer.acquire.

public static class ReadLock implements Lock {

public void lock() {
sync.acquireShared(1);

}
// . . .

public static class WriteLock implements Lock {

public void lock() {
sync.acquire(1);

}
// . . .

Listing 4.8: Extract of source code for the ReadLock and WriteLock

Further the documentation states, when the lock is already held, the thread becomes
disabled until the lock is released. Frequent disabling should become visible in the threads
state information provided by the profiler. The second approach is to evaluate the results

44

of the method profiling view. How much time was spent in the lock method could give
indications whether contention has emerged.

Profiling

The benchmark was initialized with 2 reader and 1 writer threads. A reader thread reads
1000 times from the shared Map and a writer thread writes 1000 times to the shared Map.
The results are shown in table 4.7 and 4.8 and 4.9.

Thread Role #contention

Thread-0 Reader 279
Thread-1 Reader 274
Thread-2 Writer 270

Table 4.7: Number of times a thread was in contention with another thread

Method Time (%) Time (ms) #Invocations

ReentrantSyncMap.containsKey 8,574 1.398.782.574 9691
ReentrantLock.unlock 6,961 511793545 21504
ReentrantLock.lock 6,884 506080847 21505
ReentrantLock$NonfairSync.lock 6,669 49026705 21505
AbstractQueuedSynchronizer.release 6,651 488992358 21504
AbstractQueuedSynchronizer.acquire 5,742 1865171978 4867
AbstractQueuedSynchronizer.acquireQueued 5,412 1763032115 4853
AbstractQueuedSynchronizer.unparkSuccessor 5,168 1197296572 6824
LockSupport.unpark 5,029 116525269 6824

Table 4.8: Methods in which most of the time was spent during the execution using Reen-
trantLock

Method Time (%) Time (ms) #Invocations

ReentrantReadWriteLock$ReadLock.lock 8,445 6,7 18572
ReadWriteMap.containsKey 8,395 13,8 9242
AbstractQueuedSynchronizer.acquireShared 6,6 6,9 18573
ReadWriteMap.size 5,402 10,5 7256
AbstractQueuedSynchronizer.doAcquireShared 16,9 2,5 2661
AbstractQueuedSynchronizer.parkAndCheckInterrupt 4,0 8,2 4181
LockSupport.park 3,963 2,8 4181
ReentrantReadWriteLock$Sync.tryAcquireShared 3,7 2,7 21984
ReadWriteMap.put 3,783 3,0 2001
Unsafe.park 3,699 1,4 4181

Table 4.9: Methods in which most of the time was spent during the execution using Read-
WriteLock

45

Evaluation

At first glance the contention seems to be quite high for the case of synchronizing the Map
with monitor locks. Until taking a look at the monitor log it was not clear what caused
so much contention, even though every reader executes 1000 reads. There are two methods
on which the reader thread might content: size and get. Since Map.size is invoked in every
iteration step, this explains what multiplier lead to the number of contention.
Unfortunately the attempt failed to compare the three different locking mechanism with

each other. Especially the profiling of the explicit locks does not contain enough information
in order to attribute it in a meaningful way. The first approach to counter this problem could
be the implementation of measuring how much time the contention took using monitor locks.
For the explicit locks once again the time between executing Lock.lock and Lock.unlock
could be measured. In addition it would be necessary to check the threads’ state when
entering Lock.lock for actually being able to detect contention is explicit locks. This use case
demonstrated the limitations of the profiler, especially with respect to profiling higher-level
locking primitives from the java.util.concurrent package.

4.2.6 Dynamic Lock-Ordering Deadlock

Indiscriminate use of locking can cause lock-ordering deadlocks. Since the JVM does not
recover from deadlocks it makes sense to check whether the application ensures the preclusion
of conditions which can cause this liveness hazard [GBB+06, p. 205].

Problem

Considering the following code in listing 4.9 which was adapted from Java Concurrency
in Practice [GBB+06, p. 208]. The method transfers money from one account to another.
Both account locks are acquired in order to update both balances atomically. The example
instantiates two accounts and executes the transferMoney method concurrently for every
account. It would be interesting to see, how the resource-allocation graph is able to visualize
the occurring contention.

Approach

The resource-allocation graph view will be sufficient for this example.

Profiling

The program did not terminate and the profiler found a circle in the graph which means
that a deadlock has occurred.

46

public void transferMoney(Account fromAccount, Account toAccount, int amount)
throws InsufficientFundsException {

synchronized (fromAccount) {
synchronized (toAccount) {

i f (fromAccount.getBalance().compareTo(amount) < 0) {
throw new InsufficientFundsException();

} else {
fromAccount.debit(amount);
toAccount.credit(amount);

}
}

}
}

Listing 4.9: Dynamic lock-ordering deadlock

Figure 4.8: Illustrating the occurrence of a deadlock with the dynamically constructed
resource-allocation graph

Evaluation

The first monitor lock acquisition of both threads succeeded. But when trying to acquire
the other monitor lock both threads contended with each other. The graphical user interface
alerts with a change to the tab that a deadlock has been found. The circle can clearly be
seen in the resource-allocation graph which is shown in figure 4.8.
Revisiting the code shown in listing 4.9 it seemed like all threads acquire the locks in the

same order. But the actual lock-order depends on the arguments passed into the method. A

47

deadlock can arise, when two threads are calling transferMoney : thread A wants to transfer
money from Account X to Account Y and Thread B wants to do the opposite. Lock-ordering
deadlocks can happen if threads acquire the same locks in a different order. A program will
be free of lock-ordering deadlocks if all threads acquire the locks they need in a fixed global
order [GBB+06, p. 208].
It is obvious that the resource-allocation graph cannot point out the actual design flaw,

but it still might help to find it. Observing the current state of a resource-allocation graph
and trying to understand the steps which have occurred can help to reproduce to some
degree how the program was executed.

4.2.7 Synchronizing on Strings

The monitor lock on which the synchronization should be performed can be selected freely.
This means that the monitor lock does not have to be this, like it is the case when adding
the synchronized modifier to a method. An example of this possibility can be seen in listing
4.10. A FileServer has a file storage and offers two types of requests: defaultRequest and
fileRequest. Both request types have to be executed atomically. Since the defaultRequest
and the fileRequest can be executed independently it is desired to reduce the contention,
respectively increase the throughput. For this reason both classes, FileServer and Storage
have their own private lock object. For self explanatory reasons a string literal is used.

Problem

The problem arises when deploying the FileServer. It seems like the desired improvement
in throughput could not be achieved. In order to check, whether the synchronization is
performed as intended the profiler is applied.

Approach

The monitor view, monitor log view and the resource-allocation graph view should be ap-
propriate since monitor related events have to be traced.

Profiling

Class Context

de.fu.profiler.examples.FileServer
FileServer.defaultRequest
Storage.getFile

Table 4.10: Listing the profiled monitors and in which context each monitor was accessed in
the Synchronizing on Strings example

48

public class FileServer {

int hits = 0;
Storage storage = new Storage();
private String lock = "LOCK";

public void defaultRequest() {
synchronized (lock) {
++hits;
// some de fau l t proces s ing

}
}

public File fileRequest(int id) {
return storage.getFile(id);

}
}

class Storage {

Map<Integer, File> files = new TreeMap<Integer, File>();
private String lock = "LOCK";

public File getFile(int id) {
synchronized (lock) {

return files.get(id);
}

}
}

Listing 4.10: Synchronizing on string literals

(a) One monitor in use (b) Two monitors in use

Figure 4.9: Displaying the different resource-allocation graph patterns in the Synchronizing
on Strings example

Evaluation

In figure 4.10 it can be seen how one monitor lock was used during the whole profiling,
unlike two monitors which was the intention of the program presented above. The difference
between both cases are also illustrated in the resource-allocation graph view, which can be
seen in figure 4.9.
The reason for this problem is rooted in how the Java programming language handles

strings. In the Java Language Specification it is stated, that string literals are interned in

49

order to share unique instances. This means, using a string literal as monitor lock can lead
to deadlock or performance loss. This concurrency bug was already present several times
in the past. One example is the BoundedThreadPool class of the open source HTTP server
Jetty. The code contained a synchronization block using a string literal as lock. This bug
was reported in their issue tracker [Fou11].

4.3 Evaluation

When using the profiler the first time, it is noticed, that the amount of data being revealed to
the user goes beyond the written code. This already starts in the general view, where threads
were shown which are used for JVM maintenance: Reference Handler, Signal Dispatcher,
Finalizer and DestroyJavaVM. A similar situation was experienced when dealing with the
monitor log view. Used monitors and related actions to it, like lock acquisition and waiting
and signaling, are not only shown because the developer made invocations to them in the
code, but also because Java is using them for implementations across the library code. Both
can lead to more information than expected and therefore care has to be taken, when which
event is within the scope of the application being profiled.
Often it is hard to compare the profiled results due to their different implementation. This

was best seen in the use case Instrumenting Explicit Locks. The lack of particular capabilities
demonstrated the profilers incompleteness. But then again, this is also an approach to
explore methods which improve the extraction of information. Based on these results new
strategies to extend the profiler can be developed.
A clear advantage of the profiler was shown when dealing with a large number of interacting

threads. The monitor log view was quickly overloaded with information and it is hard to
figure out how single threads interacted with each other. The concept of filtering has proven
to be useful, since it allowed to compare a choice of threads with each other. The same is
true for filtering the information by using other criteria, for example event types.
Delivering stack traces for every event, wherever it made sense, helped to understand

the rest of the information even better. For instance, when different roles were assigned to
threads it was unclear how to recognize these roles from the profiler view. The stack trace
revealed which code the threads were executing, thus helping to classify the threads.
It is interesting to see how few information can lead to meaningful conclusions. This was

shown in the example Extending A Thread-Safe Class and Synchronizing on Strings, where
the number and class type of used monitors made it possible to figure out erroneous behavior.
In contrast, the visualization of threads’ states did not help to clearly identify correlations.
Since there outcome were to vague or too obvious, attempts to interpret the presented data
failed. It is conceivable, that alternative presentations, for instance by presenting the state
changes on a timeline, could improve the utility.

50

4.4 Overhead

In section 2.4.3 it was described that using a profiler will influence the program execution in
any case. If it also the case, that method events are used to implement method profiling, the
overhead will increase dramatically. This assumption was confirmed when profiling the use
cases. Non-intensive computation tasks, as it was shown in the use cases Overhead of Santa
Claus Problem and Fairness of Bounded Buffer, had little impact. This can be explained by
the fact threads spent a large part of their execution time in the states Waiting and Blocked.
When only few methods are executed, the overhead is negligible. The overhead increases at
the point, where the timespan between events is decreased to a minimum. Otherwise, the
agent has sufficient time for transmitting the messages.
In contrast, when dealing with computation intensive tasks the CPU is busy executing

instructions. Every method exit leads to native profiler code being executed. For instance, as
seen in the use case Bottleneck of Concurrent Merge Sort there are many method invocations
in a short period of time. This minimizes the timespan between two occurring events. In
order to counter this problem it is proposed to apply bytecode instrumentation instead. An
alternative approach was already discussed in section 3.3.5: sampling instead of tracing, the
profiler dumps periodically a stack trace of every thread and analyzes it. In order to measure
the incurring overhead selected use cases were executed with and without the profiler agent.

Profiler?

Use Case No Yes

Overhead of Santa Claus 15.107 ms 18.390 ms
Fairness of Bounded Buffer 20.102 ms 21.543 ms
Dynamic Lock-Ordering Deadlock 95 ms 1.276 ms
Bottleneck of Concurrent Merge Sort 305 ms 51.707 ms

Table 4.11: Comparing consumed execution time between normal execution and profiled
execution

The results can be seen in table 4.11. The differences between both types of runs behaved
as expected. Little difference in execution time could be observed on the use case Fairness
of Bounded Buffer. This does not mean, that the overhead is minimized when used in a
producer consumer environment. It is more due to the fact, that each producer and consumer
invokes Thread.sleep in order to simulate processing of their operations. Depending whether
the processing of their operations is a computation intensive task or a non-computation
intensive task is decisive for more realistic results.

51

Profiler? Deadlocked Terminated

Yes 286 714
No 102 898

Table 4.12: Comparing the number of times a deadlock has occurred between normal exe-
cution and profiled execution

Overhead is not only about increase of the total execution time. Every alteration of the
program execution can be understood as overhead, respectively Heisenbug as defined in
section 2.4.3. While testing the profiler such a behavior could only observed in one case:
Dynamic Lock-Ordering Deadlock. It seemed like the program is more likely to deadlock
when executed with the profiler agent. In order to confirm the assumptions a script was
written which automatically executed the use case with and without profiling agent. The
results are shown in table 4.12.
To sum up, it can be stated that the experienced overhead is far too large. The use cases

are executing in a bearable time with respect to analyzing programs. This might change
when applying the profiler on real applications. Before this is possible, the overhead has to
be minimized a lot.

52

Chapter 5

Conclusion

The purpose of this bachelor thesis was the development and usage of a profiler. A profiler
is a tool which is used during software development for measuring the execution of an
application. It was shown that profiling can be understood in a broad sense, the measurable
values differ in the same sense. It should also be clear now, that performance measuring is
not the most important task, when your application does not perform its action in the same
way the developer intended to.
The profiler works out very well with small applications. Already these small programs

reveal the overhead produced by the profiler, an overhead which renders the profiling results
sometimes into uselessness. It makes clear, how important it is to take the overhead into
account, performance impact on the one hand and different executions’ results on the other
hand, as it was seen in the deadlock example.
Profiling allows a flexible and decoupled method to analyze the programs execution at

a low level. The tool, however, is not as good as long as meaningful correlations can be
observed. Most profilers concentrate on pure CPU and memory profiling. The profiler
developed on the context of this bachelor thesis was an approach to profile applications in
oder to reveal the underlying semantic of a program with respect to concurrency.

5.1 Outcome

Taking the described functional requirements in section 3.1 into account it was possible to
fulfill all functional requirements. The JVMTI provides a sophisticated way to receive most
of the required data. Even though there is a noticeable information gain, there are still
limitations for certain areas. Often it would be better to receive a lot more information than
provided by the callback facilities of the JVMTI. This, however, is also a question of which
kind of information should be profiled.
The profiler developed in this work focused on counting statements. The exact number

of times a certain method or action has occurred can be used to determine if the program
is performing as expected. Precise examination of these results can uncover subtle errors.

53

At this level it is possible to compare the profilers functionality with the functionality of a
debugger, which should rather show the number of times a piece of code is executed [GKM04].
This is in contrast to the profiler description given in chapter 1 which aims to give an overview
of the whole execution. With concurrency this is not always possible and it is required to see
each step done in the synchronization process. When, however, considering the fact, that the
counting information is extended, such as adding a timestamp or a stack trace, the actual
characteristic of a profiler is revealed: putting together all the statements on a timeline, with
respect to their context, results in a profile which describes the programs execution. Then
it confirms with the definition given in chapter 1 again.
Considering the two non-functional requirements efficiency and portability, there are more

curtailments. Even though the overhead was an overarching topic which was always con-
sidered, the method profiling lead to a heavy impact on the program execution. In order
to counter this problem, further filters were introduced. The portability is valid to some
degree. The Java front end can be executed on every machine which can execute a Java Vir-
tual Machine. The agent, however, relies on UNIX system functions and cannot be compiled
for a windows machine as a dynamic linked library.
The overall solution is suitable when reflecting it to the problem statement described

in section 1.2. The profiler is able to trace events with respect to concurrent Java, always
attributing the events with respect to time. Information about threads and their interactions
with each other could be included and are presented in different forms in the graphical user
interface. Especially synchronization mechanisms, including access to locks, thread state
changes and waiting and signaling could be made visible to the user. To some degree
the graphical visualization is also a success, since the resource-allocation graph could be
implemented with few means. The diagrams are helpful, but it is imaginable that there are
a lot more possibilities in order to improve the process of communicating information to the
user.
In the problem statement it was also described to trace events related to higher-level

synchronization constructs like java.util.concurrent.Semaphore. Unfortunately this was not
implemented at all. This is due to different reasons. Among other topics this will be discussed
in detail in the following section which covers future work.

5.2 Future Work

Even though the profiler covers the basic mechanism for synchronization and thread coor-
dination this is not sufficient. The java.util.concurrent package is a rich library and offers
many higher-level abstraction of concurrency tasks which can ease the implementation of
concurrent software. Since most of the data structures provided by this package implement
their own synchronization and do not rely on monitor locking or monitor waiting and sig-

54

naling, it is hard for the profiler to detect this during run time. An example would be to
list all the used Semaphore objects and track their current state and list when a thread
invokes Semaphore.acquire and Semaphore.release. This, however, cannot be implemented
in a meaningful way without bytecode instrumentation.

5.2.1 Bytecode Instrumentation

Bytecode instrumentation is the modification of Java classes during run time. This has the
advantage, that the code instrumentation is limited to specified Java classes. The callback
functions in a profiling agent are invoked every time the appropriate event occurs. Bytecode
instrumentation to the opposite executes only the extra code which was inserted for the
selected class. The JVMTI supports bytecode instrumentation natively. Libraries like ASM
allow class transformation by inserting Java code. As a result, this technique is a lot more
efficient compared to pure JVMTI event hook profiling. In addition the code is optimized
by the Just-In-Time compiler. [Ora07].

5.2.2 Record Scheduling Decisions

Another useful improvement of the current profiler would be the calculation of scheduling
decision. It would offer a higher abstraction of the results currently provided by the profiler.
Scheduling decision could include which thread of a group of threads waiting for a condition
to become true is able to proceed after notification. These results could be tracked over
time and be summarized. This way it would be possible to check fairness properties which
is supported by some data structures provided in the java.util.concurrent package.

5.2.3 Overhead Reduction

With the reasons stated in the section 4.4 it is suggested to investigate how the current
profiling can be improved by using bytecode instrumentation. This way the overhead, espe-
cially produced due to method profiling, would be reduced. It would be interesting to see
in how far the performance impact changes. Further methods could be explored which can
be used to do sophisticated overhead calculations in order to modify the profiled results to
more realistic results.

5.2.4 Interactive Profiling

Another improvement would be an extension to the profiler agent side, which could not only
send messages, but receive messages in order to change the behavior. This way it would be
possible to start method profiling not prior to the user. Then only those capabilities are used
that are actually needed which is in analogous to the design decisions for the JVMTI [VL00].

55

A related topic would be the introduction of ad-hoc profiling. VisualVM and YourKit can
attach to a JVM which is already running. This way, it would be possible to avoid shutting
down already running processes. This has an advantage to those processes where it is not
preferred to terminate them during operation.

5.2.5 Alternative Profiling Methods

JVMTI is not the only way of profiling Java applications. Another approach is to use aspect-
oriented languages like AspectJ, which modifies the application at run-time, thus another
method of code instrumentation. A profiling agent does not have to be written in a native
language. Java agents allow similar facilities. Even though the functionality of a Java agent
is a subset of the functionality of a native agent, it still would be interesting to see in how
far both differ or whether profiling tools are written more effectively and efficiently in Java.

56

Bibliography

[AGH00] Ken Arnold, James Gosling, and David Holmes. The Java Programming Lan-
guage, Third Edition. Addison-Wesley, 2000.

[And99] G.R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley, 1999.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1986.

[Ba98] Mordechai Ben-ari. How to Solve The Santa Claus Problem. Concurrency: Prac-
tice & Experience, 10:485–496, 1998.

[Fou11] Eclipse Foundation. Jetty Issue # 352 – Don’t use strings as locks. WWW, 2011.
accessed July 18, 2011, 05:36pm http://jira.codehaus.org/browse/

JETTY-352.

[GBB+06] Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes, and Tim
Peierls. Java Concurrency in Practice. Addison-Wesley Longman, Amsterdam,
2006.

[GKM04] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: A Call
Graph Execution Profiler. SIGPLAN Not., 39:49–57, April 2004.

[Goo11] Google. Protocol Buffers - Google’s Data Interchange Format. WWW, 2011.
accessed July 17, 2011, 09:10pm http://code.google.com/p/protobuf/.

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning From Mis-
takes: A Comprehensive Study on Real World Concurrency Bug Characteristics.
SIGOPS Oper. Syst. Rev., 42:329–339, March 2008.

[MM00] Zakaria Maamar and Bernard Moulin. An Overview of Software Agent-Oriented
Frameworks. ACM Comput. Surv., 32, March 2000.

57

[MQ07] Madanlal Musuvathi and Shaz Qadeer. Iterative Context Bounding for System-
atic Testing of Multithreaded Programs. In Proceedings of the 2007 ACM SIG-
PLAN conference on Programming language design and implementation, PLDI
’07, pages 446–455, New York, NY, USA, 2007. ACM.

[OFN11] Joshua O’Madadhain, Danyel Fisher, and Tom Nelson. JUNG - Java Universal
Network/Graph Framework. WWW, 2011. accessed July 17, 2011, 12:02am
http://jung.sourceforge.net/.

[O’H11] Kelly O’Hair. The JVMPI Transition to JVMTI. WWW, 2011.
accessed July 18, 2011, 08:16pm http://java.sun.com/developer/

technicalArticles/Programming/jvmpitransition/.

[Ora07] Oracle. Java Virtual Machine Tool Interface (JVM TI) 1.2 Reference. WWW,
2007. accessed July 18, 2011, 07:55pm http://download.oracle.com/

javase/6/docs/platform/jvmti/jvmti.html.

[Ora11a] Oracle. Java Platform, Standard Edition 6 API Specification. WWW, 2011.
accessed July 18, 2011, 07:23pm http://download.oracle.com/javase/

6/docs/api/.

[Ora11b] Oracle. VisualVM – a debugging and performance analysis tool. WWW, 2011.
accessed July 18, 2011, 01:35am http://visualvm.java.net.

[Ray96] Eric S. Raymond. The New Hacker’s Dictionary (3rd Edition). MIT Press,
Cambridge, MA, USA, 1996.

[SE04] Amitabh Srivastava and Alan Eustace. ATOM: A System for Building Cus-
tomized Program Analysis Tools. SIGPLAN Not., 39:528–539, April 2004.

[SG98] Abraham Silberschatz and Peter Baer Galvin. Operating System Concepts, 5th
Edition. Addison-Wesley-Longman, 1998.

[SSDT11] Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Refactoring Java
Programs for Flexible Locking. In Proceeding of the 33rd international conference
on Software engineering, ICSE ’11, pages 71–80, New York, NY, USA, 2011.
ACM.

[Tro94] John A. Trono. A New Exercise in Concurrency. SIGCSE Bull., 26:8–10, Septem-
ber 1994.

[VL00] D. Viswanathan and S. Liang. Java Virtual Machine Profiler Interface. IBM
Syst. J., 39:82–95, January 2000.

58

[Wil07] Andrew Wilcox. Build Your Own Profiling Tool. WWW, 2007. accessed July
16, 2011, 12:50 http://www.ibm.com/developerworks/java/library/
j-jip/.

[You11] YourKit. YourKit – a Java and .NET profiler. WWW, 2011. accessed July 18,
2011, 01:30am http://www.yourkit.com/.

59

